Analysis of Open-Hole Compressive CFRP Laminates at Various Temperatures Based on a Multiscale Strategy

  • Zhun Liu
  • Zhidong GuanEmail author
  • Riming Tan
  • Jifeng Xu


In this paper, a multiscale analysis strategy was proposed to analyze the failure behaviors of open-hole compressive (OHC) CFRP laminates. Micro-level intralaminar failure was defined in the constituents (fiber and matrix) with a modified micromechanics failure theory. In the multiscale stress transformation, the effect of thermal residual stress was considered using constant thermal amplification factor. Meanwhile, macro-level interlaminar failure was defined with cohesive elements. Based on the simulated and experimental results, the sub-laminate scaled OHC laminates of the stacking sequence [45/0/−45/90]4s were studied at different temperatures. The established multiscale model showed good precision in the strength and failure mode predictions. Transverse throughout damage at the hole section led to the final failure. As the temperature increased, the damage process began at a lower load level and the strength of the laminates decreased significantly. Stiffness reductions and small load drops were more likely to occur before final failure. The differences in the delamination size among all interfaces tended to be smaller. Besides, matrix failure lagged under shear loading conditions if the thermal residual stress was neglected in the multiscale analysis.


Multiscale analysis Open-hole compressive Constituent Temperature Thermal residual stress 



  1. 1.
    Orifici, A.C., Herszberg, I., Thomson, R.S.: Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 86, 194–210 (2008)CrossRefGoogle Scholar
  2. 2.
    Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5, 58–80 (1971)CrossRefGoogle Scholar
  3. 3.
    Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)CrossRefGoogle Scholar
  4. 4.
    Meng, Q., Wang, Z.: Micromechanical modeling of impact damage mechanisms in unidirectional composite laminates. Appl. Compos. Mater. 23, 1099–1116 (2016)CrossRefGoogle Scholar
  5. 5.
    Tay, T.E., Tan, S.H.N., Tan, V.B.C., Gosse, J.H.: Damage progression by the element-failure method (EFM) and strain invariant failure theory (SIFT). Compos. Sci. Technol. 65, 935–944 (2005)CrossRefGoogle Scholar
  6. 6.
    Tay, T.E., Liu, G., Tan, V.B.C., Sun, X.S., Pham, D.C.: Progressive failure analysis of composites. J. Compos. Mater. 42, 1921–1966 (2008)CrossRefGoogle Scholar
  7. 7.
    Ha, S.K., Huang, Y., Han, H.H., Jin, K.K.: Micromechanics of failure for ultimate strength predictions of composite laminates. J. Compos. Mater. 44, 2347–2361 (2010)CrossRefGoogle Scholar
  8. 8.
    Sun, X.S., Tan, V.B.C., Tay, T.E.: Micromechanics-based progressive failure analysis of fibre-reinforced composites with non-iterative element-failure method. Comput. Struct. 89, 1103–1116 (2011)CrossRefGoogle Scholar
  9. 9.
    Cai, H., Miyano, Y., Nakada, M.: Long-term open-hole compression strength of CFRP laminates based on strain invariant failure theory. J. Thermoplast. Compos. Mater. 22, 63–81 (2009)CrossRefGoogle Scholar
  10. 10.
    Ha, S.K., Jin, K.K., Huang, Y.C.: Micro-mechanics of failure (MMF) for continuous fiber reinforced composites. J. Compos. Mater. 42, 1873–1895 (2008)CrossRefGoogle Scholar
  11. 11.
    Sihn, S.: Strength prediction of composites using micromechanics-based failure. In: Tsai, S.W. (eds) Strength & Life of Composites, pp. 6-29–6-51. JEC-Composites, Stanford University (2008)Google Scholar
  12. 12.
    Lee, J., Soutis, C.: Measuring the notched compressive strength of composite laminates: specimen size effects. Compos. Sci. Technol. 68, 2359–2366 (2008)CrossRefGoogle Scholar
  13. 13.
    Lee, H.K., Kim, B.R.: Numerical characterization of compressive response and damage evolution in laminated plates containing a cutout. Compos. Sci. Technol. 67, 2221–2230 (2007)CrossRefGoogle Scholar
  14. 14.
    Soutis, C., Filiou, C.: Stress distributions around holes in composite laminates subjected to biaxial loading. Appl. Compos. Mater. 5, 365–378 (1998)CrossRefGoogle Scholar
  15. 15.
    Soutis, C.: Compressive strength of composite laminates with an open hole: effect of ply blocking. J. Compos. Mater. 47, 2503–2512 (2013)CrossRefGoogle Scholar
  16. 16.
    Su, Z.C., Tay, T.E., Ridha, M., Chen, B.Y.: Progressive damage modeling of open-hole composite laminates under compression. Compos. Struct. 122, 507–517 (2015)CrossRefGoogle Scholar
  17. 17.
    Suemasu, H., Takahashi, H., Ishikawa, T.: On failure mechanisms of composite laminates with an open hole subjected to compressive load. Compos. Sci. Technol. 66, 634–641 (2006)CrossRefGoogle Scholar
  18. 18.
    Suemasu, H., Naito, Y., Gozu, K., Aoki, Y.: Damage initiation and growth in composite laminates during open hole compression tests. Adv. Compos. Mater. 21, 209–220 (2012)CrossRefGoogle Scholar
  19. 19.
    Jin, K.K., Huang, Y.C., Lee, Y.H., Ha, S.K.: Distribution of micro stresses and interfacial tractions in unidirectional composites. J. Compos. Mater. 42, 1825–1849 (2008)CrossRefGoogle Scholar
  20. 20.
    Li, X., Guan, Z.D., Li, Z.S., Liu, L.: A new stress-based multi-scale failure criterion of composites and its validation in open hole tension tests. Chin. J. Aeronaut. 27, 1430–1441 (2014)CrossRefGoogle Scholar
  21. 21.
    Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRefGoogle Scholar
  22. 22.
    Aymerich, F., Dore, F., Priolo, P.: Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements. Compos. Sci. Technol. 68, 2383–2390 (2008)CrossRefGoogle Scholar
  23. 23.
    Reeder, J.R. An evaluation of mixed-mode delamination. Hampton, Virginia: Langley Research Center, National Aeronautic and Space Administration (NASA); 1992. Report No: NASA/TM-1992–104210Google Scholar
  24. 24.
    Dávila, C.G., Camanho, P.P., Moura, M.F.: Mixed-mode decohesion elements for analysis of progressive delamination. Proceedings of the 42nd AIAA/ASME/ASCE/AHS/ASC structures, structure dynamics, and materials conference and exhibit, 45–55 Seattle (2001)Google Scholar
  25. 25.
    Jiang, W.G., Hallett, S.R., Green, B.G., Wisnom, M.R.: A concise interface constitutive law for analysis of delamination and splitting in composite materials and its application to scaled notched tensile specimens. Int. J. Numer. Methods Eng. 69, 1982–1995 (2007)CrossRefGoogle Scholar
  26. 26.
    Pinho, S.T., Iannucci, L., Robinson, P.: Formulation and implementation of decohesion elements in an explicit finite element code. Compos. A: Appl. Sci. Manuf. 37, 778–789 (2006)CrossRefGoogle Scholar
  27. 27.
    Harper, P.W., Hallett, S.R.: A fatigue degradation law for cohesive interface elements - development and application to composite materials. Int. J. Fatigue. 32, 1774–1787 (2010)CrossRefGoogle Scholar
  28. 28.
    Mayes, J.S., Hansen, A.C.: Composite laminate failure analysis using multicontinuum theory. Compos. Sci. Technol. 64, 379–394 (2004)CrossRefGoogle Scholar
  29. 29.
    Brewer, J.C., Lagace, P.A.: Quadratic stress criterion for initiation of delamination. J. Compos. Mater. 22, 1141–1155 (1988)CrossRefGoogle Scholar
  30. 30.
    Davila, C.G., Johnson, E.R.: Analysis of delamination initiation in postbuckled dropped-ply laminates. AIAA J. 31, 721–727 (1993)CrossRefGoogle Scholar
  31. 31.
    Alfano, G., Crisfield, M.A.: Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int. J. Numer. Methods Eng. 50, 1701–1736 (2001)CrossRefGoogle Scholar
  32. 32.
    ASTM D5528. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken, PA, USA: American Society for Testing and Materials (ASTM) 2002Google Scholar
  33. 33.
    ASTM D7095. Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. West Conshohocken, PA, USA: American Society for Testing and Materials (ASTM) 2014Google Scholar
  34. 34.
    Hillerborg, A., Modéer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–781 (1976)CrossRefGoogle Scholar
  35. 35.
    Iarve, E.V., Pagano, N.J.: Singular full-field stresses in composite laminates with open holes. Int. J. Solids Struct. 38, 1–28 (2001)CrossRefGoogle Scholar
  36. 36.
    Wisnom, M.R., Hallett, S.R., Soutis, C.: Scaling effects in notched composites. J. Compos. Mater. 44, 195–210 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Aeronautic Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Beijing Aeronautical Science and Technology Research InstituteBeijingChina

Personalised recommendations