Cohesive Model for the Simulation of Crack Initiation and Propagation in Mixed-Mode I/II in Composite Materials

  • Antonio PantanoEmail author


A cohesive element able to connect and simulate crack growth between independently modeled finite element subdomains with non-matching meshes is proposed and validated. The approach is based on penalty constraints and has several advantages over conventional FE techniques in disconnecting two regions of a model during crack growth. The most important is the ability to release portion of the interface that are smaller than the local finite element length. Thus, the growth of delamination is not limited to advancing by releasing nodes of the FE model, which is a limitation common to the methods found in the literature. Furthermore, it is possible to vary the penalty parameter within the cohesive element, allowing to apply the damage model to a chosen fraction of the interface between the two meshes. A novel approach for modeling the crack growth in mixed mode I + II conditions has been developed. This formulation leads to a very efficient computational approach that is completely compatible with existing commercial software. In order to investigate the accuracy and to validate the proposed methodology, the growth of the delamination is simulated for the DCB, ENF and MMB tests and the results are compared with the experimental data.


Finite element Cohesive element Penalty method Composite materials Delamination Mixed-mode propagation 



  1. 1.
    Aminpour, M.A., Ransom, J.B., McCleary, S.L.: A coupled analysis method for structures with independently modelled finite element subdomains. Int. J. Numer. Methods Eng. 38, 3695–3718 (1995). CrossRefGoogle Scholar
  2. 2.
    Bitencourt, L.A.G., Manzoli, O.L., Prazeres, P.G.C., Rodrigues, E.A., Bittencourt, T.N.: A coupling technique for non-matching finite element meshes. Comput. Methods Appl. Mech. Eng. 290, 19–44 (2015). CrossRefGoogle Scholar
  3. 3.
    Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32, 1205–1227 (1991). CrossRefGoogle Scholar
  4. 4.
    Lim, J.H., Im, S., Cho, Y.S.: MLS (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement. Comput. Methods Appl. Mech. Eng. 196, 2216–2228 (2007). CrossRefGoogle Scholar
  5. 5.
    Kim, H., Cho, M.: Sub-domain reduction method in non-matched interface problems. J. Mech. Sci. Technol. 22, 203–212 (2008). CrossRefGoogle Scholar
  6. 6.
    Aminpour, M.A., Krishnamurthy, T., Fadale, T.D.: Coupling of independently modeled three-dimensional finite element meshes with arbitrary shape Interface boundaries. AIAA paper. 98, 3014–3024 (1998)Google Scholar
  7. 7.
    Aminpour, M.A., Pageau, S., Shin, Y.: An alternative method for the Interface modeling technology. AIAA paper. 1352, 1–13 (2000)Google Scholar
  8. 8.
    Maday, Y., Mavriplis, C., Patera, A.T.: Nonconforming mortar element methods: application to spatial discretization. In: Domain Decompos. Methods Partial Differ. Equations 3rd Int. Symp. Proc, pp. 392–418 (1989)Google Scholar
  9. 9.
    Pantano, A., Averill, R.C.: A penalty-based finite element interface technology. Comput. Struct. 80, 1725–1748 (2002). CrossRefGoogle Scholar
  10. 10.
    Pantano, A., Averill, R.C.: A penalty-based interface technology for coupling independently modeled 3D finite element meshes. Finite Elem. Anal. Des. 43, 271–286 (2007). CrossRefGoogle Scholar
  11. 11.
    Pradhan, S.C., Tay, T.E.: Three-dimensional finite element modelling of delamination growth in notched composite laminates under compressive loading. Eng. Fract. Mech. 60, 157–171 (1998)CrossRefGoogle Scholar
  12. 12.
    Kaczmarek, K., Wisnom, M.R., Jones, M.I.: Edge delamination in curved (0/±45)s glass-fibre/epoxy beams loaded in bending. Compos. Sci. Technol. 58, 155–161 (1998)CrossRefGoogle Scholar
  13. 13.
    Rinderknecht, S., Kroplin, B.: A computational method for the analysis of delamination growth in composite plates. Comput. Struct. 64, 359–374 (1997)CrossRefGoogle Scholar
  14. 14.
    Dudgale, D.S.: Yielding of steel sheets containing slits. J of Mech and Physics of Solid. 8, 100–104 (1960)CrossRefGoogle Scholar
  15. 15.
    Barenblatt, G.I.: Mathematical theory of equilibrium cracks in brittle failure. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefGoogle Scholar
  16. 16.
    Dimitri, R., Trullo, M., De Lorenzis, L., Zavarise, G.: Coupled cohesive zone models for mixed-mode fracture: a comparative study. Eng. Fract. Mech. 148, 145–179 (2015). CrossRefGoogle Scholar
  17. 17.
    Allix, O., Corigliano, A.: Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int. J. Solids Struct. 36, 2189–2216 (1999). CrossRefGoogle Scholar
  18. 18.
    Camanho P, Davila CG. Mixed-mode Decohesion finite elements in for the simulation composite of delamination materials. Nasa 2002;TM-2002-21:1–37.
  19. 19.
    Chen, J.: Simulation of multi-directional crack growth in braided composite T-piece specimens using cohesive models. Fatigue Fract. Eng. Mater. Struct. 34, 123–130 (2011). CrossRefGoogle Scholar
  20. 20.
    Chen, J., Wang, F.S., Shi, G.C., Cao, G., He, Y., Ge, W.T., Liu, H., Wu, H.A.: Finite element analysis for adhesive failure of progressive cavity pump with stator of even thickness. J. Pet. Sci. Eng. 125, 146–153 (2015). CrossRefGoogle Scholar
  21. 21.
    Bruyneel, M., Delsemme, J.P., Jetteur, P., Germain, F.: Modeling inter-laminar failure in composite structures: illustration on an industrial case study. Appl. Compos. Mater. 16, 149–162 (2009). CrossRefGoogle Scholar
  22. 22.
    Fan, C., Jar, P.Y.B., Cheng, J.J.R.: Cohesive zone with continuum damage properties for simulation of delamination development in fibre composites and failure of adhesive joints. Eng. Fract. Mech. 75, 3866–3880 (2008). CrossRefGoogle Scholar
  23. 23.
    Högberg, J.L.: Mixed mode cohesive law. Int. J. Fract. 141, 549–559 (2006). CrossRefGoogle Scholar
  24. 24.
    Miron, M.C., Constantinescu, D.M.: Strain fields at an interface crack in a sandwich composite. Mech. Mater. 43, 870–884 (2011). CrossRefGoogle Scholar
  25. 25.
    Palmieri, V., De Lorenzis, L.: Multiscale modeling of concrete and of the FRP-concrete interface. Eng. Fract. Mech. 131, 150–175 (2014). CrossRefGoogle Scholar
  26. 26.
    Wu, L., Tjahjanto, D., Becker, G., Makradi, A., Jérusalem, A., Noels, L.: A micro-meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Eng. Fract. Mech. 104, 162–183 (2013). CrossRefGoogle Scholar
  27. 27.
    Choi, N.S., Kinloch, A.J., Williams, J.G.: Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II and mixed-mode I/II loading. J. Compos. Mater. 33, 73–100 (1999). CrossRefGoogle Scholar
  28. 28.
    Reeder, J.R., Crews, J.H.: Mixed-mode bending method for delamination testing. AIAA J. 28, 1270–1276 (1990). CrossRefGoogle Scholar
  29. 29.
    D7905/D7905M-14, ASTM D7905/D7905M-14. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM B Stand 2014;15.03:1–18.
  30. 30.
    Mi, Y., Crisfield, A., Davies, A.O., Hellweg, H.B.: Progressive delamination using Interface elements. J of Comps Mater. 32, 1246–1272 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di IngegneriaUniversità degli Studi di PalermoPalermoItaly

Personalised recommendations