Fatigue Hysteresis Loops Simulation of SiCf /Ti Composites under Two-Stage Cyclic Loading

  • Weiyi Sun
  • Zhigang SunEmail author
  • Qi Lu
  • Xihui Chen
  • Yingdong Song


The fatigue hysteresis behavior of SiCf/Ti composites at two-stage cyclic loading has been investigated in present analysis. The effect of fiber volume fraction, loading sequence and fiber shape parameters on the fatigue hysteresis loops of composites were analyzed. Based on the law of interface slip during loading and unloading, the hysteresis loop models considering the failure criterion of fibers and interface shear stress degradation have been developed. Then, the validity of the model was confirmed by experiments. The study provides a basis and reference for further study of mechanical properties under multistage or even random cyclic loading.


SiCf/Ti composites Hysteresis loops Two-stage cyclic loading The model of interfacial frictional sliding 



This work was supported in part by National Basic Research Program of China, National Natural Science Foundation of China (51675266), Aeronautical Science Foundation of China (2014ZB52024), Foundation of Graduate Innovation Center in NUAA (no.kfjj20170208).Foundation of Graduate Innovation Center in NUAA (no.kfjj20170220),Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX18_0314).


  1. 1.
    Pank, D.R., Jackson, J.J.: Metal- matrix composite processing technologies for aircraft engine applications[J]. J Mater Eng Perform. 2(3), 341–346 (1993)CrossRefGoogle Scholar
  2. 2.
    Peihuan, L.I., Zhang, Y., Wang, T., et al.: Research Progress on continuous SiC Fiber reinforced metal matrix composite[J]. J. Mater. Eng. 44(8), 121–129 (2016)Google Scholar
  3. 3.
    Zweben, C.: Advanced composites for aerospace applications : a review of current status and future prospects[J]. Composites. 12(4), 235–240 (1981)CrossRefGoogle Scholar
  4. 4.
    Sun, Y.J., Zhong, W.S., Shi, H.F., et al.: A review on metal matrix composites[J]. Foundry Technology. (2004)Google Scholar
  5. 5.
    Wu, G.: Development challenge and opportunity of metal matrix composites[J]. Acta Materiae Compositae Sinica. 31(5), 1228–1237 (2014)Google Scholar
  6. 6.
    Wang, T., Zhao, Y., Fu, S., et al.: Progress and key problems in research and fabrication of Fiber reinforced metal matrix composite[J]. J Aeronautical Materials. 33(2), 87–96 (2013)Google Scholar
  7. 7.
    Walls, D.P., Zok, F.W.: Interfacial fatigue in a fiber reinforced metal matrix composite[J]. Acta Metall. Mater. 42(8), 2675–2681 (1994)CrossRefGoogle Scholar
  8. 8.
    Xuan, F.: Fatigue damage of laminated composites and two stage loading life prediction[J]. Chinese J Appl Mech. 15(1), 90–94 (1998)Google Scholar
  9. 9.
    Feng, G.H., Yang, Y.Q., Luo, X., Li, J., Huang, B., Chen, Y.: Fatigue properties and fracture analysis of a SiC fiber-reinforced titanium matrix composite[J]. Composites Part B. 68, 336–342 (2015)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Shi, Z., Zhu, Q.: Interfacial DEBONDING of composite under two-stage loading[j]. Acta Materiae Compositae Sinica. 21(4), 140–145 (2004)Google Scholar
  11. 11.
    Feng, G., Yang, Y., Li, J., et al.: Fatigue behavior and damage evolution of SiC Fiberreinforced Ti-6Al-4V alloy matrix composites[J]. Rare Metal Materials Eng. 43(9), 2049–2054 (2014)CrossRefGoogle Scholar
  12. 12.
    Juntao, C.: Study on Fatigue Behavior of Carbon-Fiber Reinforced Composite under High and Low Cyclic Loading [D]. Harbin Institute of Technology (2017)Google Scholar
  13. 13.
    LiYang, X., WengGe, L.V., ZhaoFeng, S.: Experimental study on fatigue damage under two level loading[J]. J Mech Strength. 16(3), 647–656 (1994)Google Scholar
  14. 14.
    Gao, X., Fang, G., Song, Y.: Hysteresis loop model of unidirectional carbon fiber-reinforced ceramic matrix composites under an arbitrary cyclic load[J]. Composites Part B. 56(1), 92–99 (2014)CrossRefGoogle Scholar
  15. 15.
    Sun, Q., Luo, X., Yang, Y.Q., Huang, B., Jin, N., Zhang, W., Zhao, G.M.: Micromechanical analysis of fiber and titanium matrix interface by shear lag method[J]. Composites Part B. 79, 466–475 (2015)CrossRefGoogle Scholar
  16. 16.
    Evans, A.G., Zok, F.W., Mcmeeking, R.M.: Fatigue of ceramic matrix composites[J]. Acta Metall. Mater. 43(3), 859–875 (1995)CrossRefGoogle Scholar
  17. 17.
    Smith, R.L.A.: Probability model for fibrous composites with local load sharing[J]. Proc. R. Soc. Lond. 372(1751), 539–553 (1980)CrossRefGoogle Scholar
  18. 18.
    Longbiao, L.: A hysteresis dissipated energy-based damage parameter for life prediction of carbon fiber-reinforced ceramic-matrix composites under fatigue loading[J]. Compos. Part B. 82, 108–128 (2015)CrossRefGoogle Scholar
  19. 19.
    Lou, J.H., Yang, Y.Q., Sun, Q., Li, J., Luo, X.: Study on longitudinal tensile properties of SiC f/Ti–6Al–4V composites with different interfacial shear strength[J]. Mater Sci Eng A. 529(1), 88–93 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Jiangsu Province Key Laboratory of Aerospace Power System and College of Energy and Power EngineeringNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations