Advertisement

Investigation of the Quasi-Homogenous Laminate by Means of the Direction Factor of the Bending Stiffness

  • Qingnian LiuEmail author
  • Yong Cai
  • Xiaojing Liu
  • Zhiyong Yang
Article
  • 70 Downloads

Abstract

The direction factor of the bending stiffness was defined in terms of the proportional coefficient of the bending stiffness corresponding to the identical ply orientations, as well as a new iterative mode, cycle after symmetry, of the laminate. On the basis of the quasi-isotropic laminate, the method of the direction factor of bending stiffness considerably reduces the computational capacity with respect to the quasi-homogeneity. By means of the method of the direction factor and comparison of the direction factors corresponding to three kinds of laminates, the iterative mode of cycle after symmetry has superior performance than the common iterative modes, which is applicable to the design and optimization of the laminate, especially for the homogeneous laminate.

Keywords

CFRP Equivalent bending stiffness Direction factor of the bending stiffness Quasi-isotropic laminate Quasi-homogeneity laminate Iterative mode 

References

  1. 1.
    Kar, A.K.: Mechanics of Composite Materials. Taylor & Francis, Boca Raton (2006)Google Scholar
  2. 2.
    Akkerman, R.: On the properties of quasi-isotropic laminates. Compos. Part B-Eng. 33, 133–140 (2002).  https://doi.org/10.1016/s1359-8368(02)00002-1 CrossRefGoogle Scholar
  3. 3.
    Yang, Z.Y., Zhang, J.B., Xie, Y.J., Zhang, B.M., Sun, B.G., Guo, H.J.: Influence of layup and curing on the surface accuracy in the manufacturing of carbon fiber reinforced polymer (CFRP) composite space mirrors. Appl. Compos. Mater. 24, 1447–1458 (2017).  https://doi.org/10.1007/s10443-017-9595-7 CrossRefGoogle Scholar
  4. 4.
    Paradies, R., Hertwig, M.: Shape control of adaptive composite reflectors. Compos. Part B-Eng. 30, 65–78 (1999).  https://doi.org/10.1016/s1359-8368(98)00026-2 CrossRefGoogle Scholar
  5. 5.
    Kim, K. P., Hale, R. D.: Design of directionally uniform extensional and flexural stiffness in quasi-isotropic laminates. The 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Schaumburg, 1749, 1–7 (2008).  https://doi.org/10.2514/6.2008-1749
  6. 6.
    Weaver, P. M.: On laminate selection and design. The 43th AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics, and Materials Conference, Denver, 1220, 1–11 (2002).  https://doi.org/10.2514/6.2002-1220
  7. 7.
    Tsai, S.W., Hahn, H.T.: Introduction to Composite Materials. Technomic, Westport (1980)Google Scholar
  8. 8.
    Fukunaga, H.: On isotropic laminate configurations. J. Compos. Mater. 24, 519–535 (1990).  https://doi.org/10.1177/002199839002400504 CrossRefGoogle Scholar
  9. 9.
    Paradies, R.: Design quasi-isotropic laminates with respect to bending. Compos. Sci. Technol. 56, 461–472 (1996).  https://doi.org/10.1016/0266-3538(96)00006-1 CrossRefGoogle Scholar
  10. 10.
    Bowers, C.W.: Advances in very lightweight composite mirror technology. Opt. Eng. 39, 2320–2329 (2000).  https://doi.org/10.1117/1.1288125 CrossRefGoogle Scholar
  11. 11.
    Arao, Y., Koyanagi, J., Utsunomiya, S., Kawada, H.: Effect of ply angle misalignment on out-of-plane deformation of symmetrical cross-ply CFRP laminates: accuracy of the ply angle alignment. Compos. Struct. 93, 1225–1230 (2011).  https://doi.org/10.1016/j.compstruct.2010.10.019 CrossRefGoogle Scholar
  12. 12.
    Romeo, R.C., Martin, R.N.: Progress in 1m-class, lightweight, CFRP composite mirrors for the ULTRA telescope. Proc. SPIE. 6273, 62730S (2006).  https://doi.org/10.1117/12.672221 CrossRefGoogle Scholar
  13. 13.
    Wu, Q.X.: Structural Reliability Analysis and Stochastic Finite Element Method. China Machine Press, Beijing (2005)Google Scholar
  14. 14.
    Wu, K.M., Avery, B.L.: Fully isotropic laminates and quasi-homogeneous anisotropic laminates. J. Compos. Mater. 26, 2107–2117 (1992).  https://doi.org/10.1177/002199839202601406 CrossRefGoogle Scholar
  15. 15.
    Zeng, C.M., Xia, Y., Guo, P.J.: Active deformation and engineering analysis of CFRP mirror of various lay-up sequences within quasi-isotropic laminates. Proc. SPIE. 9281, 92810O (2014).  https://doi.org/10.1117/12.2068389 CrossRefGoogle Scholar
  16. 16.
    Qiao, W., Yao, W.X.: Equivalent bending stiffness method for stacking sequence optimization of composite stiffened pane. Chin. J. Comput. Mech. 28, 158–162 (2011)Google Scholar
  17. 17.
    Vannucci, P., Verchery, G.: A new method for generating fully isotropic laminates. Compos. Struct. 58, 75–82 (2002).  https://doi.org/10.1016/s0263-8223(02)00038-7 CrossRefGoogle Scholar
  18. 18.
    Verchery, G.: Design rules for the laminate stiffness. J. Compos. Mater. 47, 47–58 (2011).  https://doi.org/10.1007/s11029-011-9186-x CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Qingnian Liu
    • 1
    Email author
  • Yong Cai
    • 1
  • Xiaojing Liu
    • 2
  • Zhiyong Yang
    • 1
  1. 1.Aerospace Research Institute of Materials & Processing TechnologyBeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of sciencesBeijingChina

Personalised recommendations