Advertisement

On the Design and Simulation of Hybrid Metal-Composite Gears

  • Piervincenzo G. CateraEmail author
  • Domenico Mundo
  • Alessandra Treviso
  • Francesco Gagliardi
  • Amit Visrolia
Article
  • 316 Downloads

Abstract

The aim of this work is to show how the use of a composite body affects the behaviour of hybrid metal-composite gears during meshing. The proposed model compares a spur hybrid gear to a steel lightweight gear of equal mass in order to study the influence of the composite web on the mesh stiffness. In a finite element (FE) simulation environment, the body of the gear is represented as a sequence of CFRP unidirectional (UD) plies arranged in a symmetric layup and resulting in quasi-isotropic properties. Static non-linear FE analyses are conducted to evaluate the static transmission error (STE) curve of the hybrid gear pair and to compare it against the one achieved by a pair of steel gears with a thin-rimmed lightweight design and with the same macro-geometry properties. Additionally, a cohesive modelling technique is used to take account for the damage at the metal-composite interface.

Keywords

Hybrid gears Mechanical transmissions Transmission error Finite element analysis Cohesive modelling 

Notes

Acknowledgements

The authors gratefully acknowledge Siemens Industry Software NV (Belgium) for the valuable support.

References

  1. 1.
    Treviso, A., Van Genechten, B., Mundo, D., Tournour, M.: Damping in composite materials: properties and models. Composite Part B, volume. 78, 144–152 (2015)CrossRefGoogle Scholar
  2. 2.
    Kim, B.J., Kim, H.S., Lee, D.G.: Design of Hybrid steel/composite circular plate cutting tool structures. Compos. Struct. 75, 250–260 (2006)CrossRefGoogle Scholar
  3. 3.
    Cho, S.-K., Kim, H.-J., Chang, S.-H.: The application of polymer composites to the table-top machine tool components for higher stiffness and reduced weight. Compos. Struct. 93, 492–501 (2011)CrossRefGoogle Scholar
  4. 4.
    Chang, S.H., Kim, P.J., Lee, D.G., Choi, J.K.: Steel-composite hybrid headstock for high-precision grinding machines. Compos. Struct. 53, 1–8 (2001)CrossRefGoogle Scholar
  5. 5.
    Kim, J.-H., Chang, S.-H.: Design of μ-CNC machining Centre with carbon/epoxy composite-aluminium hybrid structures containing friction layers for high damping capacity. Composites Structures, volume. 92, 2128–2136 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Kim, A comparative study of the mechanical performance and cost of metal, FRP, and Hybrid Beams, Applied Composite Materials 5: 175–187, 1998Google Scholar
  7. 7.
    Kim, H.S., Lee, D.G.: Optimal design of the press fit joint for a hybrid aluminium/composite drive shaft. Composites Structures, volume. 70, 33–47 (2005)CrossRefGoogle Scholar
  8. 8.
    Cho, D.H., Lee, D.G., Choi, J.H.: Manufacture of one-piece automotive drive shafts with aluminium and composite materials. Composites Structures, volume. 38, 309–319 (1997)Google Scholar
  9. 9.
    Bae, J.H., Jung, K.-C., Yoo, S.-H., Chang, S.-H., Kim, M., Lim, T.: Design and fabrication of a metal-composite hybrid wheel with a friction damping layer for enhancement of ride comfort. Composites Structures, volume. 133, 576–584 (2015)CrossRefGoogle Scholar
  10. 10.
    Shweiki, S., Palermo, A., Mundo, D.: A study on the dynamic behaviour of lightweight gears. Shock. Vib. 2017, 1–12 (2017)CrossRefGoogle Scholar
  11. 11.
    R. F. Handschuh, G.D. Roberts, R.R. Sinnamon, D. B. Stringer, B. D. Dykas, L. W. Kohlman, Hybrid Gear Preliminary Results—Application of Composites to Dynamic Mechanical Components, NASA/TM—2012-217630, July 2012Google Scholar
  12. 12.
    R. F. Handschuh, K.E. LaBerge, S. DeLuca, R. Pelagalli, Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear, NASA/TM—2014-216646, June 2014Google Scholar
  13. 13.
    K. E. LaBerge, R. F. Handschuh, G.D. Roberts, S. Thorp, Performance Investigation of a Full-Scale Hybrid Composite Bull Gear, AHS 2016 Forum; 72nd, 17–19 May 2016, West Palm Beach, FL, United StatesGoogle Scholar
  14. 14.
    K. E. LaBerge, S.P. Berkebile, R. F. Handschuh, G.D. Roberts, Hybrid Gear Performance under Loss-of-Lubrication Conditions; 73rd American Helicopter Society Annual Forum; 9-11 May 2017, United StatesGoogle Scholar
  15. 15.
    Tsouvalis, N.G., Karatzas, V.: An investigation of the tensile strength of a composite-to-metal adhesive joint. Appl. Compos. Mater. 18, 149–163 (2011)CrossRefGoogle Scholar
  16. 16.
    Kieβling, R., Ihlemann, J., Pohl, M., Stommel, M., Dammann, C., Mahnken, R., Bobbert, M., Meschut, G., Hirsch, F., Kastner, M.: On the design, characterization and simulation of metal-composite interfaces. Appl. Compos. Mater. 24, 251–269 (2017)CrossRefGoogle Scholar
  17. 17.
    Streitferdt, A., Rudolph, N., Taha, I.: Co-curing of CFRP-steel hybrid joints using the vacuum assisted resin infusion process. Appl. Compos. Mater. 24, 1137–1149 (2017)Google Scholar
  18. 18.
    P.J. Fritz, K.A. Williams, J.A. Mapkar, Metal-to-composite structural joining for drivetrain applications, Proceedings of the 2016 Annual Conference on experimental and applied mechanics, Springer (2016)Google Scholar
  19. 19.
    Catera, P.G., Gagliardi, F., Mundo, D., De Napoli, L., Matveeva, A., Farkas, L.: Multi-scale modeling of triaxial braided composites for FE-based modal analysis of hybrid metal-composite gears. Compos. Struct. 182, 116–123 (2017)CrossRefGoogle Scholar
  20. 20.
    R. K. Naffin, U. Ulun, C.D. Garmel, N. McManus, Z. Hu, W.B. Ohlerking, D.E. Mayers, RTAPS (Research and Technology for Aerospace Propulsion Systems): Simulation of Structural Loads within a Hybrid Gear Resulting from Loading at the Gear Teeth, NASA/CR-2017-218945, December 2017Google Scholar
  21. 21.
    J.D. Smith, Gear noise and vibration, 2nd ed. Marcel Dekker, Inc, 2003Google Scholar
  22. 22.
    Siemens PLM software’s SimcenterGoogle Scholar
  23. 23.
    Kuo, C.-M.: Elastic bending behavior of solid orthogonal woven 3-D carbon-carbon composite beams. Composite Science and Technology, Volume. 68, 666–672 (2008)CrossRefGoogle Scholar
  24. 24.
    Chamis, C.: Mechanics of composite materials: past, present and future. J. Compos. Technol. Res. 11(1), 3–14 (March 1989)CrossRefGoogle Scholar
  25. 25.
    ASTM D 3039, Standard Test Method for Tensile Properties of Polymer Matrix Composite MaterialsGoogle Scholar
  26. 26.
    Gibson, R.: Principle of Composite Material Mechanics, 3rd Ed. CRC Press (2011)Google Scholar
  27. 27.
    Chou, P.C., Carleone, J., Hsu, C.M.: Elastic constants of layered media. J. Compos. Mater. 6(1), 80–93 (1972)CrossRefGoogle Scholar
  28. 28.
    Farkas, L., Vanclooster, K., Erdelyi, H., Sevenois, R., Lomov, S.V., Naito, T., Urushiyama, Y.: Wim van Paepegem, virtual material characterization process for composite materials: an industrial solution, ECCM17 – 17th European conference on composite materials, Munich, Germany. In: 26 -30th (June 2016)Google Scholar
  29. 29.
    T.A. Bogetti, C.P.R. Hoppel, W.H. Drysdale, Three-dimensional effective property and strength prediction of thick laminated composite media, U.S. Army Research Laboratory, October 1995Google Scholar
  30. 30.
    Ribeiro, T.E.A., Campilho, R.D.S.G., da Silva, L.F.M., Goglio, L.: Damage analysis of composite–aluminium adhesively-bonded single-lap joints. Compos. Struct. 136, 25–33 (2016)CrossRefGoogle Scholar
  31. 31.
    Bruyneel, M., Delsemme, J.P., Jetteur, P., Germain, F.: Modeling inter-laminar failure in composite structures: illustration on an industrial case study. Appl. Compos. Mater. 16, 149–162 (2009)Google Scholar
  32. 32.
    Allix, O., Ladevèze, P.: Interlaminar interface modelling for the prediction of laminated delamination. Compos. Struct. 22, 235–242 (1992)CrossRefGoogle Scholar
  33. 33.
    NX Nastran, Multi-Step Nonlinear User‘s GuideGoogle Scholar
  34. 34.
    Palermo, A., Britte, L., Janssens, K., Mundo, D., Desmet, W.: The measurement of gear transmission error as an NVH indicator: theoretical discussion and industrial application via low-cost digital encoders to an all-electric vehicle gearbox. Mech. Syst. Signal Process. 110, 360–389 (2018)CrossRefGoogle Scholar
  35. 35.
    Korta, J.A., Mundo, D.: Multi-objective micro-geometry optimization of the gear tooth supported by response surface methodology. Mech. Mach. Theory. 109, 278–295 (2017)CrossRefGoogle Scholar
  36. 36.
    www.shdcomposite.comGoogle Scholar
  37. 37.
    www.torayca.comGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical, Energy and Management EngineeringUniversity of CalabriaRendeItaly
  2. 2.National Composites CentreBristol & Bath Science ParkEmersons GreenUK

Personalised recommendations