Advertisement

Theoretical Analysis on Needle-Punched Carbon/Carbon Composites

  • Meng Han
  • Vadim V. Silberschmidt
Article
  • 45 Downloads

Abstract

Needle-punched carbon/carbon composites (NP-C/Cs) are advanced materials widely used in aerospace applications. The needle-punching technique improves the integrality of carbon-fibre plies, however, it also introduces many defects, affecting the mechanical behavior of NP-C/Cs. A theoretical model of irregular beams is suggested to investigate the mechanical behavior of unidirectional needle-punched carbon/carbon composites. Stress distributions in punched and squeezed fibres and an effect of the needle-punching technology are assessed.

Keywords

Carbon/carbon composites Mesomechanics Theoretical analysis 

Notes

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (11872205, 11272147), SKL Open Fund (MCMS-0218G01), Foundation of National Scholarship of China (201706830073), Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

  1. 1.
    Li, X., Yu, S., Li, Y.P., Wu, Q., Li, Z., Xiao, T., et al.: Effect of pre-fatigue on bending behavior of 2.5D C/C composites. Mater. Sci. Eng. A. 682, 290–295 (2017)CrossRefGoogle Scholar
  2. 2.
    Li, D.S., Duan, H.W., Wang, W., Ge, D.Y., Jiang, L., Yao, Q.Q.: Strain rate and temperature effect on mechanical properties and failure of 3D needle-punched carbon/carbon composites under dynamic loading. Compos. Struct. 172, 229–241 (2017)CrossRefGoogle Scholar
  3. 3.
    Alipour, M.M.: An analytical approach for bending and stress analysis of cross/angle-ply laminated composite plates under arbitrary non-uniform loads and elastic foundations. Arch. Civ. Mech. Eng. 16, 193–210 (2016)CrossRefGoogle Scholar
  4. 4.
    Zhang, M.Y., Su, Z.A., Li, J.L., Huang, Q.Z.: Bending properties and fracture mechanism of C/C composites with high density preform. Trans. Nonferrous Metals Soc. China. 21, 1795–1800 (2011)CrossRefGoogle Scholar
  5. 5.
    Zhang, M.Y., Su, Z., Xie, Z., Chen, J., Huang, Q.: Microstructure of pyrocarbon with chemical vapor infiltration. Procedia Eng. 27, 847–854 (2011)CrossRefGoogle Scholar
  6. 6.
    Li, D.S., Yao, Q., Jiang, N., Jiang, L.: Bend properties and failure mechanism of a carbon/carbon composite with a 3D needle-punched preform at room and high temperatures. New Carbon Mater. 31, 437–444 (2016)CrossRefGoogle Scholar
  7. 7.
    Li, D.S., Fang, D.N., Zhang, G.B., Hu, H.: Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite. Mater. Des. 41, 167–170 (2012)CrossRefGoogle Scholar
  8. 8.
    Li, D.S., Li, J.L., Chen, L., Lu, Z.X., Fang, D.N.: Finite element analysis of mechanical properties of 3D four-directional rectangular braided composites part 1: microgeometry and 3D finite element model. Appl. Compos. Mater. 17, 373–387 (2010)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Lu, Z., Yang, Z., Zhang, D., Shi, J., Yuan, Z., Liu, Q.: Compression behaviors of carbon-bonded carbon fibre composites: experimental and numerical investigations. Carbon. 116, 398–408 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Lu, Z., Yang, Z.: An interface model of the fiber pullout process of the carbon nanotubes hybridized carbon fiber composites. In: 17th European conference on composite materials. ECCM, Munich (2016)Google Scholar
  11. 11.
    Cai, Y., Fan, S., Yin, X., Zhang, L., Cheng, L., Wang, Y.: Microstructures and mechanical properties of three-dimensional ceramic filler modified carbon/carbon composites. Ceram. Int. 40, 399–408 (2014)CrossRefGoogle Scholar
  12. 12.
    Cai, Y., Yin, X., Fan, S., Zhang, L., Cheng, L.: Tribological behavior of three-dimensional needled ceramic modified carbon/carbon composites in seawater conditions. Compos. Sci. Technol. 87, 50–57 (2013)CrossRefGoogle Scholar
  13. 13.
    Cai, Y., Fan, S., Liu, H., Zhang, L., Cheng, L., Dong, B., Jiang, J.: Microstructures and improved wear resistance of 3D needled C/SiC composites with graphite filler. Compos. Sci. Technol. 69, 2447–2453 (2009)CrossRefGoogle Scholar
  14. 14.
    Mouritz, A.P.: Compression properties of z-pinned composite laminates. Compos. Sci. Technol. 67, 3110–3120 (2007)CrossRefGoogle Scholar
  15. 15.
    Belingardi, G., Cavatorta, M.P., Frasca, C.: Bending fatigue behavior of glass–carbon/epoxy hybrid composites. Compos. Sci. Technol. 66, 222–232 (2006)CrossRefGoogle Scholar
  16. 16.
    Patel, N.P., Sharma, D.S.: Bending of composite plate weakened by square hole. Int. J. Mech. Sci. 94-95, 131–139 (2015)CrossRefGoogle Scholar
  17. 17.
    Lacoste, M., Lacombe, A., Joyez, P.: Carbon/Carbon extendible nozzles. Acta Astronaut. 50, 357–367 (2002)CrossRefGoogle Scholar
  18. 18.
    Turner, P., Liu, T., Zeng, X.: Collapse of 3D orthogonal woven carbon fibre composites under in-plane tension/compression and out-of-plane bending. Compos. Struct. 142, 286–297 (2016)CrossRefGoogle Scholar
  19. 19.
    Liu, W.: Element rigidity matrix and coordinate transformation matrix of space circular arc curved beam. Journal of Wuhan Institute of Water Transportation. Engineering. 27, 97–106 (1985)Google Scholar
  20. 20.
    Dietrich, S., Gebert, J.-M., Stasiuk, G., Wanner, A., Weidenmann, K.A., Deutschmann, O., Tsukrov, I., Piat, R.: Microstructure characterization of CVI-densified carbon/carbon composites with various fibre distributions. Compos. Sci. Technol. 72, 1892–1900 (2012)CrossRefGoogle Scholar
  21. 21.
    Koricho, E.G., Belingardi, G.: An experimental and finite element study of the transverse bending behaviour of CFRP composite T-joints in vehicle structures. Composites Part B. 79, 430–443 (2015)CrossRefGoogle Scholar
  22. 22.
    Alshahrani, H., Hojjati, M.: A theoretical model with experimental verification for bending stiffness of thermosetting prepreg during forming process. Compos. Struct. 166, 136–145 (2017)CrossRefGoogle Scholar
  23. 23.
    Ropers, S., Kardos, M., Osswald, T.A.: A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites. Compos. Part A. 90, 22–32 (2016)CrossRefGoogle Scholar
  24. 24.
    D’Ottavio, M., Dozio, L., Vescovini, R.: Bending analysis of composite laminated and sandwich structures using sublaminate variable-kinematic Ritz models. Compos. Struct. 155, 45–62 (2016)CrossRefGoogle Scholar
  25. 25.
    Sobuz, H.R., Ahmed, E., Sutan, N.M., Hasan, N.M., Uddin, M.A., Uddin, M.J.: Bending and time-dependent responses of RC beams strengthened with bonded carbon fibre composite laminates. Constr. Build. Mater. 29, 597–611 (2012)CrossRefGoogle Scholar
  26. 26.
    Margossian, A., Bel, S., Hinterhoelzl, R.: Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mechanical analysis system. Compos. Part A. 77, 154–163 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Wolfson School of Mechanical, Electrical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations