Advertisement

Applied Composite Materials

, Volume 25, Issue 4, pp 823–841 | Cite as

Meso-Scale Finite Element Simulations of 3D Braided Textile Composites: Effects of Force Loading Modes

  • Chao Zhang
  • Chunjian Mao
  • Jose L. Curiel-Sosa
  • Tinh Quoc Bui
Article
  • 535 Downloads

Abstract

Meso-scale finite element method (FEM) is considered as the most effective and economical numerical method to investigate the mechanical behavior of braided textile composites. Applying the periodic boundary conditions on the unit-cell model is a critical step for yielding accurate mechanical response. However, the force loading mode has not been employed in the available meso-scale finite element analysis (FEA) works. In the present work, a meso-scale FEA is conducted to predict the mechanical properties and simulate the progressive damage of 3D braided composites under external loadings. For the same unit-cell model with displacement and force loading modes, the stress distribution, predicted stiffness and strength properties and damage evolution process subjected to typical loading conditions are then analyzed and compared. The obtained numerical results show that the predicted elastic properties are exactly the same, and the strength and damage evolution process are very close under these two loading modes, which validates the feasibility and effectiveness of the force loading mode. This comparison study provides a suitable reference for selecting the loading modes in the unit-cell based mechanical behavior analysis of other textile composites.

Keywords

3D braided composites Unit-cell Periodic boundary conditions Loading mode Meso-scale FEA 

Notes

Acknowledgments

This work was supported by the Natural Science Research Project of Colleges and Universities in Jiangsu Province (17KJB130004), Natural Science Foundation of Jiangsu Province (BK20160786) and National Natural Science Foundation of China (51605200).

References

  1. 1.
    Xia, Z.H., Zhang, Y.F., Ellyin, F.: A unified periodical boundary conditions for representative volume elements of composites and applications. Int. J. Solids Struct. 40(8), 1907–1921 (2003)CrossRefGoogle Scholar
  2. 2.
    Xia, Z.H., Zhou, C.W., Yong, Q.L., Wang, X.W.: On selection of repeated unit cell model and application of unified periodic boundary conditions in micro-mechanical analysis of composites. Int. J. Solids Struct. 43(2), 266–278 (2006)CrossRefGoogle Scholar
  3. 3.
    Li, S.: General unit cells for micromechanical analyses of unidirectional composites. Compos. Part A. 32, 815–826 (2000)CrossRefGoogle Scholar
  4. 4.
    Li, S.G.: Boundary conditions for unit cells from periodic microstructures and their implications. Compos. Sci. Technol. 68(9), 1962–1974 (2008)CrossRefGoogle Scholar
  5. 5.
    Wang, X.F., Wang, X.W., Zhou, G.M., Zhou, C.W.: Multi-scale analyses of 3D woven composite based on periodicity boundary conditions. J. Compos. Mater. 41, 1773–1788 (2007)CrossRefGoogle Scholar
  6. 6.
    Xu, K., Xu, X.: Finite element analysis of mechanical properties of 3D five-directional braided composites. Mater. Sci. Eng. A. 487(1–2), 499–509 (2008)CrossRefGoogle Scholar
  7. 7.
    Fang, G.D., Liang, J., Wang, Y., Wang, B.L.: The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites. Compos. Part A. 40(4), 343–350 (2009)CrossRefGoogle Scholar
  8. 8.
    Li, D.S., Fang, D.N., Jiang, N., Xuefeng, Y.: Finite element modeling of mechanical properties of 3D five-directional rectangular braided composites. Compos. Part B. 42(6), 1373–1385 (2011)CrossRefGoogle Scholar
  9. 9.
    Zhang, C., Xu, X.W.: Finite element analysis of 3D braided composites based on three unit-cells models. Compos. Struct. 98, 130–142 (2013)CrossRefGoogle Scholar
  10. 10.
    Dong, J.W., Huo, N.F.: A two-scale method for predicting the mechanical properties of 3D braided composites with internal defects. Compos. Struct. 152, 1–10 (2016)CrossRefGoogle Scholar
  11. 11.
    Tian, Z.Y., Yan, Y., Luo, H.B., Hong, Y.: Parameterized unit-cell models for stiffness performance analyses of three-dimensional n-directional braided composites. J. Reinf. Plast. Compos. 35(19), 1371–1386 (2016)CrossRefGoogle Scholar
  12. 12.
    Zhai, J.J., Cheng, S., Zeng, T., Wang, Z., Jiang, L.: Thermo-mechanical behavior analysis of 3D braided composites by multi-scale finite element method. Compos. Struct. 176, 664–672 (2017)CrossRefGoogle Scholar
  13. 13.
    Zeng, T., Wu, L.Z., Guo, L.C.: A finite element model for failure analysis of 3D braided composites. Mater. Sci. Eng. A. 366(1), 144–151 (2004)CrossRefGoogle Scholar
  14. 14.
    Fang, G.D., Liang, J., Wang, B.L.: Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Compos. Struct. 89, 126–133 (2009)CrossRefGoogle Scholar
  15. 15.
    Jia, X.W., Xia, Z.H., Gu, B.H.: Micro/meso-scale damage analysis of three-dimensional orthogonal woven composites based on sub-repeating unit cells. J. Strain Anal. Eng. Des. 47(5), 313–328 (2012)CrossRefGoogle Scholar
  16. 16.
    Lu, Z.X., Xia, B., Yang, Z.Y.: Investigation on the tensile properties of three dimensional full five directional braided composites. Comput. Mater. Sci. 77, 445–455 (2013)CrossRefGoogle Scholar
  17. 17.
    Zhang, C., Binienda, W.K., Goldberg, R.K., Kohlman, L.W.: Meso-scale failure modeling of single layer triaxial braided composite using finite element method. Compos. Part A. 58, 36–46 (2014)CrossRefGoogle Scholar
  18. 18.
    Wang, C., Zhong, Y.C., Adaikalaraj, P.F., et al.: Strength prediction for bi-axial braided composites by a multi-scale modelling approach. J. Mater. Sci. 51, 6002–6018 (2016)CrossRefGoogle Scholar
  19. 19.
    Zhang, D.T., Chen, L., Sun, Y., Wang, X., Zhang, Y., Fu, C.: Meso-scale progressive damage of 3D five-directional braided composites under transverse compression. J. Compos. Mater. 50(24), 3345–3361 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhai, J.J., Zeng, T., Xu, G.D., Wang, Z.H., Cheng, S., Fang, D.N.: A multi-scale finite element method for failure analysis of three dimensional braided composite structures. Compos. Part B. 110, 476–486 (2017)CrossRefGoogle Scholar
  21. 21.
    Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: A novel interface constitutive model for prediction of stiffness and strength in 3D braided composites. Compos. Struct. 163, 32–43 (2017)CrossRefGoogle Scholar
  22. 22.
    Wang, R.Q., Zhang, L., Hu, D.Y., Liu, X., Cho, C., Li, B.: Progressive damage simulation in 3D four-directional braided composites considering the jamming-action-induced yarn deformation. Compos. Struct. 178, 330–340 (2017)CrossRefGoogle Scholar
  23. 23.
    Zhang, C., Curiel-Sosa, J.L., Bui, T.Q.: Comparison of periodic mesh and free mesh on the mechanical properties prediction of 3D braided composites. Compos. Struct. 159, 667–676 (2017)CrossRefGoogle Scholar
  24. 24.
    Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms. Compos. Sci. Technol. 59(3), 391–404 (1999)CrossRefGoogle Scholar
  25. 25.
    Chen, L., Xu, Z.Y.: Experimental analysis on the yarn’s section of three dimensional five directional braided composites. Acta Mater Compos Sin. 24(4), 128–132 (2007)Google Scholar
  26. 26.
    Xu, K., Xu, X.: On the microstructure model of four-step 3D rectangular braided composites. Acta Mater Compos Sin. 23(5), 154–160 (2006)Google Scholar
  27. 27.
    Hashin, Z.: Failure criteria for unidirectional fiber composite. J. Appl. Mech. 47, 329–334 (1980)CrossRefGoogle Scholar
  28. 28.
    Lapczyk, I., Hurtado, J.A.: Progressive damage modeling in fiber reinforced materials. Compos. Part A. 38(11), 2333–2341 (2007)CrossRefGoogle Scholar
  29. 29.
    Murakami, S.: Mechanical modeling of material damage. J Appl Mech. 55, 280–286 (1988)CrossRefGoogle Scholar
  30. 30.
    Zhang, C., Mao, C.J., Zhou, Y.X.: Meso-scale damage simulation of 3D braided composites under quasi-static axial tension. Appl. Compos. Mater. 24(5), 1179–1199 (2017)CrossRefGoogle Scholar
  31. 31.
    Chamis, C.C.: Mechanics of composites materials: past, present and future. J. Compos. Technol. Res. 11(1), 3–14 (1989)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Chao Zhang
    • 1
    • 2
  • Chunjian Mao
    • 3
  • Jose L. Curiel-Sosa
    • 2
  • Tinh Quoc Bui
    • 4
  1. 1.School of Mechanical EngineeringJiangsu UniversityZhenjiangChina
  2. 2.Department of Mechanical EngineeringThe University of SheffieldSheffieldUK
  3. 3.State Key Laboratory of Mechanics and Control of Mechanical StructuresNanjing University of Aeronautics and AstronauticsNanjingChina
  4. 4.Department of Civil and Environmental EngineeringTokyo Institute of TechnologyTokyoJapan

Personalised recommendations