Advertisement

Applied Composite Materials

, Volume 26, Issue 1, pp 65–83 | Cite as

Numerical Analysis of Macro-Scale Mechanical Behaviors of 3D Orthogonal Woven Composites using a Voxel-Based Finite Element Model

  • Song Yu
  • Diantang Zhang
  • Kun QianEmail author
Article
  • 492 Downloads

Abstract

A study is conducted with the aim of developing voxel-based finite element method related to the whole fiber distribution for predicting the macro-mechanical properties of 3D orthogonal woven composites. For the rationality of this model, multi-scale finite element method, which is on the basis of the surface and interior representative volume cells, and digital image correlation tests are carried out. The results show that the proposed voxel-based finite element method is capable of precisely calculating the macro-level properties of 3D orthogonal woven composites, validated by the comparison the mechanical behaviors as well as the full-field strain fields.

Keywords

3D orthogonal woven Hybrid composites Mechanical properties Voxel-based finite element method Macro-scale finite element method 

Notes

Funding

The authors gratefully acknowledge the financial support from Natural Science Foundation of China (No. 11702115), Natural Science Foundation of Jiangsu Province (P.R.China) (No. BK20170166) and Natural Science Foundation Central Universities (No. JUSRP11703).

Compliance with Ethical Standards

Conflict of Interest

None declared.

References

  1. 1.
    Hallal, A., Younes, R., Fardoun, F.: Review and comparative study of analytical modeling for the elastic properties of textile composites. Compos. Part. B-Eng. 50, 22–31 (2013)CrossRefGoogle Scholar
  2. 2.
    Bilisik, K.: Multiaxis three-dimensional weaving for composites: a review. Text. Res. J. 82(7), 725–743 (2012)CrossRefGoogle Scholar
  3. 3.
    Ansar, M., Wang, X.W., Zhou, C.W.: Modeling strategies of 3D woven composites: a review. Compos. Struct. 93(8), 1947–1963 (2011)CrossRefGoogle Scholar
  4. 4.
    Lin, H., Ramgulam, R., Arshad, H., Clifford, M.J., Potluri, P., Long, A.C.: Multi-scale integrated modelling for high performance flexible materials. Comput. Mater. Sci. 65, 276–286 (2012)CrossRefGoogle Scholar
  5. 5.
    Vanaershot, A., Cox, B.N., Lomov, S.V., et al.: Stochastic multi-scale modelling of textile composites based on internal geometry variability. Comput. Struct. 122, 55–64 (2013)CrossRefGoogle Scholar
  6. 6.
    Deng, Y., Chen, X.H., Wang, H.: A multi-scale correlating model for predicting the mechanical properties of tri-axial braided composites. J. Reinf. Plast. Compos. 32(24), 1934–1955 (2012)CrossRefGoogle Scholar
  7. 7.
    Kwon, Y.W., Kim, D.H., Chu, T.: Multi-scale modeling of refractory woven fabric composites. J. Mater. Sci. 41, 6647–6654 (2006)CrossRefGoogle Scholar
  8. 8.
    Bacatteza, O., Aliabadi, M., Apicella, A.: Multi-scale failure analysis of plain-woven composites. J. Strain Anal. Eng. Des. 47(6), 379–388 (2012)CrossRefGoogle Scholar
  9. 9.
    Lu, Z.X., Zhou, Y., Yang, Z.Y., Liu, Q.: Multi-scale finite element analysis of 2.5D woven fabric composites under on-axis and off-axis tension. Comput. Mater. Sci. 79, 485–494 (2013)CrossRefGoogle Scholar
  10. 10.
    Dai, S., Cunningham, P.R.: Multi-scale damage modelling of 3D woven composites under uni-axial tension. Compos. Struct. 142, 298–312 (2016)CrossRefGoogle Scholar
  11. 11.
    Bassam, E.S., Dmitry, I., Andrew, C.L., et al.: Multi-scale modelling of strongly heterogenerous 3D composite structures using spatial Voronoi tessellation. J. Mech. Phy. Solids. 88, 50–71 (2016)CrossRefGoogle Scholar
  12. 12.
    Wang, Y.M., Sun, B.Z., Gu, B.H.: Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions. Mech. Mater. 94, 1–25 (2016)CrossRefGoogle Scholar
  13. 13.
    Zhang, D.T., Sun, Y., Wang, X.M., Chen, L.: Prediction of macro-mechanical properties of 3D braided composites based on fiber embedded matrix method. Compos. Struct. 134, 393–408 (2015)CrossRefGoogle Scholar
  14. 14.
    Lomov, S.V., Verpoest, I., Cichosz, J., Hahn, C., Ivanov, D.S., Verleye, B.: Meso-level textile composites simulations: open data exchange and scripting. J. Compos. Mater. 48(5), 621–637 (2014)CrossRefGoogle Scholar
  15. 15.
    Dong, W.F., Xiao, J., Li, Y., et al.: Theoretical study on elastic properties of 2.5D braided composites. J NanJing Univ. Aeronaut. Astronaut. 37(5), 659–663 (2005)Google Scholar
  16. 16.
    Huang, Z.M.: Abridging model prediction of the ultimate strength of composite laminates subjceted to biaxial loads. Compos. Sci. Technol. 64, 395–448 (2004)CrossRefGoogle Scholar
  17. 17.
    Vanaerschot, A., Cox, B.N., Lomov, S.V., Vandepitte, D.: Experimentally validated stochastic geometry description for textile composite reinforcements. Compos. Sci. Technol. 122, 122–129 (2016)CrossRefGoogle Scholar
  18. 18.
    Paterl, D.K., Waas, A.M.: Damage and failure modelling of hybrid three-dimensional textile composites: a mesh objective multi-scale approach. Phil. Trans. R. Soc. A. 374, 1–31 (2016)Google Scholar
  19. 19.
    Doitrand, A., Fagiano, C., Irisarri, F.X., Hirsekorn, M.: Comparison between voxel and consistent meso-scale models of woven composites. Compos Part A-App. 73, 143–154 (2015)CrossRefGoogle Scholar
  20. 20.
    Isart, N., Said, B.E., Hallett, S.R., et al.: Internal geometric modelling of 3D woven composites: a comparison between different approaches. Compos. Struct. 132, 1219–1230 (2015)CrossRefGoogle Scholar
  21. 21.
    Zhang, C., Xu, X.W.: Finite element analysis of 3D braided composites based on three unit-cells models. Compos. Struct. 98, 130–142 (2013)CrossRefGoogle Scholar
  22. 22.
    Koerber, H., Xavier, J., Camanho, P.P., Essa, Y.E., Martín de la Escalera, F.: High strain rate behavior of 5-harness-satin weave fabric carbon-epoxy composite under compression and combined compression-shear loading. Int. J. Solids Struct. 54, 172–182 (2015)CrossRefGoogle Scholar
  23. 23.
    Grammond, G., Boyd, S.W., Dulieu-Barton, J.M.: Evaluating the localised through-thickness load transfer and damage initiation in a composite joint using digital image correlation. Compos. Part A-App. S. 61, 224–234 (2014)CrossRefGoogle Scholar
  24. 24.
    Grail, G., Hirsekorn, M., Wendling, A., Hivet, G., Hambli, R.: Consistent finite element mesh generation for meso-scale modeling of textile composites with preformed and compacted reinforcements. Compos. Part A-App. 55, 143–151 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Textiles, Ministry of EducationJiangnan UniversityWuxiChina

Personalised recommendations