Advertisement

Applied Composite Materials

, Volume 26, Issue 1, pp 389–408 | Cite as

Optimal Damping Behavior of a Composite Sandwich Beam Reinforced with Coated Fibers

  • S. LurieEmail author
  • Y. Solyaev
  • A. Ustenko
Article
  • 408 Downloads

Abstract

In the present paper, the effective damping properties of a symmetric foam-core sandwich beam with composite face plates reinforced with coated fibers is studied. A glass fiber-epoxy composite with additional rubber-toughened epoxy coatings on the fibers is considered as the material of the face plates. A micromechanical analysis of the effective properties of the unidirectional lamina is conducted based on the generalized self-consistent method and the viscoelastic correspondence principle. The effective complex moduli of composite face plates with a symmetric angle-ply structure are evaluated based on classical lamination theory. A modified Mead-Markus model is utilized to evaluate the fundamental modal loss factor of a simply supported sandwich beam with a polyurethane core. The viscoelastic frequency-dependent behaviors of the core and face plate materials are both considered. The properties of the face plates are evaluated based on a micromechanical analysis and found to implicitly depend on frequency; thus, an iterative procedure is applied to find the natural frequencies of the lateral vibrations of the beam. The optimal values of the coating thickness, lamination angle and core thickness for the best multi-scale damping behavior of the beam are found.

Keywords

Sandwich beam Damping properties Coated fibers Generalized self-consistent method Mead-Markus model 

Notes

Acknowledgements

This work was supported by the Russian Science Foundation under grant 17-79-20105 issued to the Moscow Aviation Institute.

References

  1. 1.
    Chandra, R., Singh, S.P., Gupta, K.: Damping studies in fiber-reinforced composites - a review. Compos. Struct. 46(1), 41–51 (1999).  https://doi.org/10.1016/S0263-8223(99)00041-0 CrossRefGoogle Scholar
  2. 2.
    Zhou, X.Q., Yu, D.Y., Shao, X.Y., Zhang, S.Q., Wang, S.: Research and applications of viscoelastic vibration damping materials: a review. Compos. Struct. 136, 460–480 (2016).  https://doi.org/10.1016/j.compstruct.2015.10.014 CrossRefGoogle Scholar
  3. 3.
    Ungar, E.E.: Loss factors of viscoelastically damped beam structures. J. Acoust. Soc. Am. 34(8), 1082–1089 (1962).  https://doi.org/10.1121/1.1918249 CrossRefGoogle Scholar
  4. 4.
    Jones, D.I.G.: Handbook of Viscoelastic Vibration Damping. Wiley, New York (2001)Google Scholar
  5. 5.
    Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib. 262(3), 457–474 (2003).  https://doi.org/10.1016/S0022-460X(03)00106-8 CrossRefGoogle Scholar
  6. 6.
    D’Alessandro, V., Petrone, G., Franco, F., Rosa, S.D.: A review of the vibroacoustics of sandwich panels: Models and experiments. J. Sandw. Struct. Mater. 15(5), 541–582 (2013).  https://doi.org/10.1177/1099636213490588 CrossRefGoogle Scholar
  7. 7.
    Njuguna, J.: Lightweight Composite Structures in Transport Design, Manufacturing, Analysis and Performance. Woodhead publishing, Cambridge (2016)Google Scholar
  8. 8.
    Finegan, I.C., Gibson, R.F.: Recent research on enhancement of damping in polymer composites. Compos. Struct. 44(2-3), 89–98 (1999).  https://doi.org/10.1016/S0263-8223(98)00073-7 CrossRefGoogle Scholar
  9. 9.
    Kishi, H., Kuwata, M., Matsuda, S., Asami, T., Murakami, A.: Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Compos. Sci. Technol. 64(16), 2517–2523 (2004).  https://doi.org/10.1016/j.compscitech.2004.05.006 CrossRefGoogle Scholar
  10. 10.
    Gibson, R.F., Chen, Y., Zhao, H.: Improvement of vibration damping capacity and fracture toughness in composite laminates by the use of polymeric interleaves. J. Eng. Mater. Technol. 123(3), 309–314 (2001).  https://doi.org/10.1115/1.1370385 CrossRefGoogle Scholar
  11. 11.
    Yang, J., Xiong, J., Ma, L., Wang, B., Zhang, G., Wu, L.: Vibration and damping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers. Compos. Struct. 106(February), 570–580 (2013).  https://doi.org/10.1016/j.compstruct.2013.07.015 CrossRefGoogle Scholar
  12. 12.
    Fotsing, E.R., Sola, M., Ross, A., Ruiz, E.: Lightweight damping of composite sandwich beams: Experimental analysis. J. Compos. Mater. 47(12), 1501–1511 (2013).  https://doi.org/10.1177/0021998312449027 CrossRefGoogle Scholar
  13. 13.
    Finegan, I.C., Gibson, R.F.: Analytical modeling of damping at micromechanical level in polymer composites reinforced with coated fibers. Compos. Sci. Technol. 60(7), 1077–1084 (2000).  https://doi.org/10.1016/S0266-3538(00)00003-8 CrossRefGoogle Scholar
  14. 14.
    Gusev, A.A., Lurie, S.A.: Loss amplification effect in multiphase materials with viscoelastic interfaces. Macromolecules 42(14), 5372–5377 (2009).  https://doi.org/10.1021/ma900426v CrossRefGoogle Scholar
  15. 15.
    Finegan, I.C., Gibson, R.F.: Improvement of damping at the micromechanical level in polymer composite materials under transverse normal loading by the use of special fiber coatings. J. Vibr. Acoust.-Trans. Asme 120 (2), 623–627 (1998).  https://doi.org/10.1115/1.2893872 CrossRefGoogle Scholar
  16. 16.
    Fisher, F.T., Brinson, L.C.: Viscoelastic interphases in polymer-matrix composites: Theoretical models and finite-element analysis. Compos. Sci. Technol. 61 (5), 731–748 (2001).  https://doi.org/10.1016/S0266-3538(01)00002-1 CrossRefGoogle Scholar
  17. 17.
    Haberman, M.R., Berthelot, Y.H., Cherkaoui, M.: Micromechanical modeling of particulate composites for damping of acoustic waves. J. Eng. Mater. Technol. 128 (3), 320 (2006).  https://doi.org/10.1115/1.2204943 CrossRefGoogle Scholar
  18. 18.
    He, L.H., Liu, Y.L.: Damping behavior of fibrous composites with viscous interface under longitudinal shear loads. Compos. Sci. Technol. 65(6), 855–860 (2005).  https://doi.org/10.1016/j.compscitech.2004.09.003 CrossRefGoogle Scholar
  19. 19.
    Friebel, C., Doghri, I., Legat, V.: General mean-field homogenization schemes for viscoelastic composites containing multiple phases of coated inclusions. Int. J. Solids Struct. 43(9), 2513–2541 (2006).  https://doi.org/10.1016/j.ijsolstr.2005.06.035 CrossRefGoogle Scholar
  20. 20.
    Schoneich, M., Dinzart, F., Sabar, H., Berbenni, S., Stommel, M.: A coated inclusion-based homogenization scheme for viscoelastic composites with interphases. Mech. Mater. 105, 89–98 (2017).  https://doi.org/10.1016/j.mechmat.2016.11.009 CrossRefGoogle Scholar
  21. 21.
    Lurie, S., Minhat, M., Tuchkova, N., Soliaev, J.: On remarkable loss amplification mechanism in fiber reinforced laminated composite materials. Appl. Compos. Mater. 21(1), 179–196 (2014).  https://doi.org/10.1007/s10443-013-9371-2 CrossRefGoogle Scholar
  22. 22.
    Gusev, A.A.: Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions. Int. J. Solids Struct. 88-89, 79–87 (2016).  https://doi.org/10.1016/j.ijsolstr.2016.03.021 CrossRefGoogle Scholar
  23. 23.
    Gusev, A.A.: Optimum microstructural design of coated sphere filled viscoelastic composites for structural noise and vibration damping applications. Int. J. Solids Struct. 128, 1–10 (2017).  https://doi.org/10.1016/j.ijsolstr.2017.07.005 CrossRefGoogle Scholar
  24. 24.
    Mead, D.J., Markus, S.: The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 10(2), 163–175 (1969).  https://doi.org/10.1016/0022-460X(69)90193-X CrossRefGoogle Scholar
  25. 25.
    Kerwin, E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31(7), 952–962 (1959).  https://doi.org/10.1121/1.1907821 CrossRefGoogle Scholar
  26. 26.
    Rao, D.K.: Frequency and loss factors of sandwich beams under various boundary conditions. J. Mech. Eng. Sci. 20(5), 271–282 (1978).  https://doi.org/10.1243/JMES-JOUR-1978-020-047-02 CrossRefGoogle Scholar
  27. 27.
    Lifshitz, J.M., Leibowitz, M.: Optimal sandwich beam design for maximum viscoelastic damping. Int. J. Solids Struct. 23(7), 1027–1034 (1987).  https://doi.org/10.1016/0020-7683(87)90094-1 CrossRefGoogle Scholar
  28. 28.
    Van Tooren, M.J.L., Krakers, L.A., Beukers, A.: Integration of mechanics and acoustics in a sandwich fuselage. Part IV. Appl. Compos. Mater. 12(1), 37–51 (2005)CrossRefGoogle Scholar
  29. 29.
    Shi, Y., Sol, H., Hua, H.: Material parameter identification of sandwich beams by an inverse method. J. Sound Vib. 290(3-5), 1234–1255 (2006).  https://doi.org/10.1016/j.jsv.2005.05.026 CrossRefGoogle Scholar
  30. 30.
    Arvin, H., Sadighi, M., Ohadi, A.R.: A numerical study of free and forced vibration of composite sandwich beam with viscoelastic core. Compos. Struct. 92(4), 996–1008 (2009).  https://doi.org/10.1016/j.compstruct.2009.09.047 CrossRefGoogle Scholar
  31. 31.
    Martinez-Agirre, M., Elejabarrieta, M.J.: Characterisation and modelling of viscoelastically damped sandwich structures. Int. J. Mech. Sci. 52(9), 1225–1233 (2010).  https://doi.org/10.1016/j.ijmecsci.2010.05.010 CrossRefGoogle Scholar
  32. 32.
    Irazu, L., Elejabarrieta, M.J.: The effect of the viscoelastic film and metallic skin on the dynamic properties of thin sandwich structures. Compos. Struct. 176, 407–419 (2017).  https://doi.org/10.1016/j.compstruct.2017.05.038 CrossRefGoogle Scholar
  33. 33.
    Irazu, L., Elejabarrieta, M.J.: A novel hybrid sandwich structure: Viscoelastic and eddy current damping. Mater. Des. 140, 460–472 (2018).  https://doi.org/10.1016/j.matdes.2017.11.070 CrossRefGoogle Scholar
  34. 34.
    Carrera, E., Brischetto, S.: A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates. Appl. Mech. Rev. 62(1), 010,803 (2009).  https://doi.org/10.1115/1.3013824 CrossRefGoogle Scholar
  35. 35.
    Hu, H., Belouettar, S., Potier-Ferry, M., Daya, E.M.: Review and assessment of various theories for modeling sandwich composites. Compos. Struct. 84 (3), 282–292 (2008).  https://doi.org/10.1016/j.compstruct.2007.08.007 CrossRefGoogle Scholar
  36. 36.
    Caliri, M.F., Ferreira, A.J.M., Tita, V.: A review on plate and shell theories for laminated and sandwich structures highlighting the Finite Element Method. Compos. Struct. 156, 63–77 (2016).  https://doi.org/10.1016/j.compstruct.2016.02.036 CrossRefGoogle Scholar
  37. 37.
    Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27(4), 315–330 (1979).  https://doi.org/10.1016/0022-5096(79)90032-2 CrossRefGoogle Scholar
  38. 38.
    Herve, E., Zaoui, A.: Elastic behavior of multiply coated fibre-reinforced composites. Int. J. Eng. Sci. 33(10), 1419–1433 (1995)CrossRefGoogle Scholar
  39. 39.
    Christensen, R.M.: Mechanics of Composite Materials. Courier Corporation, North Chelmsford (2012)Google Scholar
  40. 40.
    Hashin, Z., Rosen, W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31(2), 223–232 (1964)CrossRefGoogle Scholar
  41. 41.
    Nilsson, E., Nilsson, A.C.: Prediction and measurement of some dynamic properties of sandwich structures with. J. Sound Vibr. 251(3), 409–430 (2002).  https://doi.org/10.1006/jsvi.2001.4007 CrossRefGoogle Scholar
  42. 42.
    Mead, D.J.: The measurement of the loss factors of beams and plates with constrained and unconstrained damping layers: a critical assessment. J. Sound Vib. 300(3-5), 744–762 (2007)CrossRefGoogle Scholar
  43. 43.
    Fu, Z.F., He, J.: Modal Analysis. Butterworth-Heinemann, Oxford (2001)Google Scholar
  44. 44.
    Arikoglu, A.: Multi-objective optimal design of hybrid viscoelastic/composite sandwich beams by using the generalized differential quadrature method and the non-dominated sorting genetic algorithm II. Struct. Multidiscip. Optim. 56(4), 885–901 (2017)CrossRefGoogle Scholar
  45. 45.
    Araujo, A., Soares, C., Soares, C., Herskovits, J.: Optimal design and parameter estimation of frequency dependent viscoelastic laminated sandwich composite plates. Compos. Struct. 92, 2321–2327 (2010)CrossRefGoogle Scholar
  46. 46.
    Pritz, T.: Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 265 (5), 935–952 (2003).  https://doi.org/10.1016/S0022-460X(02)01530-4 CrossRefGoogle Scholar
  47. 47.
    Arikoglu, A.: A new fractional derivative model for linearly viscoelastic materials and parameter identification via genetic algorithms. Rheol. Acta 53(3), 219–233 (2014).  https://doi.org/10.1007/s00397-014-0758-2  https://doi.org/10.1007/s00397-014-0758-2 CrossRefGoogle Scholar
  48. 48.
    Soovere, J., Drake, M.: Aerospace Structures Technology Damping Design Guide: Volume III, Damping Material Data. AFWAL-TR-84-3089 (1985)Google Scholar
  49. 49.
    Dong, S., Gauvin, R.: Application of dynamic mechanical analysis for the study of the interfacial region in carbon fiber/epoxy composite materials. Polym. Compos. 14(5), 414–420 (1993).  https://doi.org/10.1002/pc.750140508 CrossRefGoogle Scholar
  50. 50.
    Burns, J., Dubbleday, P.S., Ting, R.Y.: Dynamic bulk modulus of soft elastomers. J. Polym. Sci.: Part B: Polym. Phys. 28, 1187–1205 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Mechanics of the Russian Academy of Sciences and Moscow Aviation InstituteMoscowRussia

Personalised recommendations