Advertisement

Applied Composite Materials

, Volume 26, Issue 1, pp 371–387 | Cite as

Investigation on the Yarn Squeezing Effect of Three Dimensional Full Five Directional Braided Composites

  • Long Hu
  • Guoquan TaoEmail author
  • Zhenguo Liu
  • Yibo Wang
  • Jixuan Ya
Article
  • 208 Downloads

Abstract

The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.

Keywords

Three dimensional braided composites Yarn squeezing effect Micro computed tomography Repeated unit cell model 

References

  1. 1.
    Liu, Z.: Concept of three-dimensional all five-directional braided performs. Mater Sci Eng S. 1, 305–312 (2008)Google Scholar
  2. 2.
    Zhang, F., Liu, Z., Wu, Z., Tao, G.: A new scheme and microstructural model for 3D full 5-directional braided composites. Chin. J. Aeronaut. 23(1), 61–67 (2010)CrossRefGoogle Scholar
  3. 3.
    Pi, X., Qian, K., Cao, H.: Microstructure analysis of 3D full 5-directional braided composites. Aerosp Mater Technol. 41, 39–43 (2011)Google Scholar
  4. 4.
    Zhang, C., Xu, X., Chen, K.: Application of three unit-cells models on mechanical analysis of 3D five-directional and full five-directional braided composites. Appl. Compos. Mater. 20(5), 803–825 (2013)CrossRefGoogle Scholar
  5. 5.
    Xu, K., Qian, X.: A new analytical model on predicting the elastic properties of 3D full five-directional braided composites based on a multiunit cell model. Compos. Part B. 83, 242–252 (2015)CrossRefGoogle Scholar
  6. 6.
    Xu, K., Qian, X.: Microstructural modeling of three-dimensionally full five-directional braided composites based on a new multiunit cell scheme. J. Ind. Text. 46(2), 388–416 (2016)CrossRefGoogle Scholar
  7. 7.
    Lu, Z., Xia, B., Yang, Z.: Investigation on the tensile properties of three-dimensional full five-directional braided composites. Comput. Mater. Sci. 77, 445–455 (2013)CrossRefGoogle Scholar
  8. 8.
    Hu, L., Liu, Z., Wang, Y., Ou, J.: Experiments and progressive damage analyses of three-dimensional full five-directional braided composites under three-point bending. Polym. Compos. 37(8), 2478–2493 (2016)CrossRefGoogle Scholar
  9. 9.
    Wang, Y., Liu, Z., Lei, B., Huang, X., Li, X.: Investigation on the bearing abilities of three-dimensional full five-directional braided composites with cut-edge. Appl. Compos. Mater. 24(4), 893–910 (2017)CrossRefGoogle Scholar
  10. 10.
    Chen, L., Tao, X.M., Choy, C.L.: On the microstructure of three-dimensional braided preforms. Compos. Sci. Technol. 59(3), 391–404 (1999)CrossRefGoogle Scholar
  11. 11.
    Chen, L., Xu, Z.: Experimental analysis on the yarn's section of three-dimensional five-directional braided composites. Fuhe Cailiao Xuebao(Acta Mater. Compos. Sin.)(China). 24(4), 128–132 (2007)Google Scholar
  12. 12.
    Fang, G.D., Liang, J., Wang, Y., Wang, B.L.: The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites. Compos. A: Appl. Sci. Manuf. 40(4), 343–350 (2009)CrossRefGoogle Scholar
  13. 13.
    Fang, G.D., Liang, J., Lu, Q., Wang, B., Wang, Y.: Investigation on the compressive properties of the three dimensional four-directional braided composites. Compos. Struct. 93(2), 392–405 (2011)CrossRefGoogle Scholar
  14. 14.
    Xu, K., Qian, X.: Analytical prediction of the elastic properties of 3D braided composites based on a new multiunit cell model with consideration of yarn distortion. Mech. Mater. 92, 139–154 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhu, Y., Cui, H., Wen, W., Xu, Y., Zhang, H.: Microstructure model and stiffness prediction of 3D braided composites considering yarns' cross-section variation. Acta Materiae Compositae Sinica. 29(6), 187–196 (2012)Google Scholar
  16. 16.
    Wang, R., Zhang, L., Hu, D., Shen, X., Song, J.: Mesoscopic Modeling of 3D Four-Directional Braided Composites. In: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, vol. 49828, p. V006T002A001. (2016).  https://doi.org/10.1115/GT2016-56280
  17. 17.
    Wang, R., Zhang, L., Hu, D., Cho, C.: Evaluation of three unit cell models in predicting the mechanical behaviour of 3D four-directional braided composites. J. Compos. Mater. 51(27), 0021998e31769265 (2017)CrossRefGoogle Scholar
  18. 18.
    Wang, R.Q., Zhang, L., Hu, D.Y., Liu, X., Cho, C.D., Li, B.: Progressive damage simulation in 3D four-directional braided composites considering the jamming-action-induced yarn deformation. Compos. Struct. 178, 330–340 (2017).  https://doi.org/10.1016/j.compstruct.2017.07.021 CrossRefGoogle Scholar
  19. 19.
    Stock, S.: Recent advances in X-ray microtomography applied to materials. Int. Mater. Rev. 53(3), 129–181 (2008)CrossRefGoogle Scholar
  20. 20.
    Desplentere, F., Lomov, S.V., Woerdeman, D., Verpoest, I., Wevers, M., Bogdanovich, A.: Micro-CT characterization of variability in 3D textile architecture. Compos. Sci. Technol. 65(13), 1920–1930 (2005)CrossRefGoogle Scholar
  21. 21.
    Djukic, L.P., Herszberg, I., Walsh, W.R., Schoeppner, G.A., Prusty, B.G., Kelly, D.W.: Contrast enhancement in visualisation of woven composite tow architecture using a MicroCT Scanner. Part 1: Fabric coating and resin additives. Composites Part A: Applied Science and Manufacturing 40(5), 553-565 (2009)Google Scholar
  22. 22.
    Djukic, L.P., Herszberg, I., Walsh, W.R., Schoeppner, G.A., Prusty, B.G.: Contrast enhancement in visualisation of woven composite architecture using a MicroCT Scanner. Part 2: Tow and preform coatings. Compos. A: Appl. Sci. Manuf. 40(12), 1870–1879 (2009)CrossRefGoogle Scholar
  23. 23.
    Li, Y., Sun, B., Gu, B.: Impact shear damage characterizations of 3D braided composite with X-ray micro-computed tomography and numerical methodologies. Compos. Struct. 176, 43–54 (2017)CrossRefGoogle Scholar
  24. 24.
    Zhou, H., Li, C., Zhang, L., Crawford, B., Milani, A.S., Ko, F.K.: Micro-XCT analysis of damage mechanisms in 3D circular braided composite tubes under transverse impact. Compos. Sci. Technol. 155, 91–99 (2018)CrossRefGoogle Scholar
  25. 25.
    Feng, Y., Feng, Z., Li, S., Zhang, W., Luan, X., Liu, Y., Cheng, L., Zhang, L.: Micro-CT characterization on porosity structure of 3D C f/SiC m composite. Compos. A: Appl. Sci. Manuf. 42(11), 1645–1650 (2011)CrossRefGoogle Scholar
  26. 26.
    Wang, Y.-B., Liu, Z.-G., Liu, N., Hu, L., Wei, Y.-C., Ou, J.-J.: A new geometric modelling approach for 3D braided tubular composites base on Free Form Deformation. Compos. Struct. 136, 75–85 (2016)CrossRefGoogle Scholar
  27. 27.
    Blacklock, M., Bale, H., Begley, M., Cox, B.: Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model. J. Mech. Phys. Solids. 60(3), 451–470 (2012)CrossRefGoogle Scholar
  28. 28.
    Ai, S., Zhu, X., Mao, Y., Pei, Y., Fang, D.: Finite Element Modeling of 3D Orthogonal Woven C/C Composite Based on Micro-Computed Tomography Experiment. Appl. Compos. Mater. 21(4), 603–614 (2014)CrossRefGoogle Scholar
  29. 29.
    Fang, G., Chen, C., Yuan, S., Meng, S., Liang, J.: Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites. Appl. Compos. Mater. 3, 1–15 (2017)Google Scholar
  30. 30.
    Ya, J., Liu, Z., Wang, Y.: Micro-CT Characterization on the Meso-Structure of Three-Dimensional Full Five-Directional Braided Composite. Appl. Compos. Mater. 24(3), 593–610 (2017)CrossRefGoogle Scholar
  31. 31.
    Huang, Y.N.: Research on the mechanical properties of three dimensional braided composites. Master’s Thesis, Beihang University. (2012). (in Chinese)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Aeronautic Science and EngineeringBeihang University (BUAA)BeijingPeople’s Republic of China
  2. 2.Shanghai Electric Wind Co. LtdShanghaiPeople’s Republic of China

Personalised recommendations