Advertisement

Applied Composite Materials

, Volume 26, Issue 1, pp 299–316 | Cite as

Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

  • Hangying ShanEmail author
  • Jun Xiao
  • Qiyi Chu
Article
  • 436 Downloads

Abstract

The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

Keywords

X-Cor® sandwich structures Z-Pin interfaces Bond-slip behavior Pull-out test FE simulation 

Notes

Acknowledgements

The experimental data in this paper about Z-Pin pulled out from face sheets with a thickness of 3 mm are derived from reference [22]. -Experimental Study on Z-Pin Bridging Law by Pullout Test. Thanks again!

Funding

This study was supported by the Fundamental Research Funds for the Central Universities (NUAA NS2015099).

Compliance with Ethical Standards

Disclosure

The author declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Carstensen, T., Cournoyer, D., Kunkel, E., Magee, C.: X-Cor™ advanced sandwich core material. Proceedings of 33rd international SAMPE technical conference. Seattle (2001)Google Scholar
  2. 2.
    Cartié, D.D.R., Fleck, N.A.: The effect of pin reinforcement upon the through-thickness compressive strength of foam-cored sandwich panels. Compos. Sci. Technol. 63, 2401–2409 (2003)CrossRefGoogle Scholar
  3. 3.
    Rice, M.C., Fleischer, C.A., Zupan, M.: Study on the collapse of pin-reinforced foam sandwich panel cores. Exp. Mech. 46(2), 197–204 (2006)CrossRefGoogle Scholar
  4. 4.
    Nanayakkara, A., Feih, S., Mouritz, A.P.: Experimental analysis of the through-thickness compression properties of Z-Pinned sandwich composites. Compos. A: Appl. Sci. Manuf. 42(11), 1673–1680 (2011)CrossRefGoogle Scholar
  5. 5.
    Haldar, S., Bruck, H.A.: A new methodology for scaling the mechanics of pin-reinforcement in composite sandwich structures under compression using digital image correlation. Exp. Mech. 55, 27–40 (2015)CrossRefGoogle Scholar
  6. 6.
    Mouritz, A.P.: Compression properties of Z-Pinned sandwich composites. J. Mater. Sci. 41(17), 5771–5774 (2006)CrossRefGoogle Scholar
  7. 7.
    Marasco, A.I., Cartié, D.D.R., Partridge, I.K., Rezai, A.: Mechanical properties balance in novel Z-Pinned sandwich panels: out-of-plane properties. Compos. A: Appl. Sci. Manuf. 37(2), 295–302 (2006)CrossRefGoogle Scholar
  8. 8.
    Du, L., Jiao, G.Q., Huang, T.: Z-Pin reinforcement on the core shear properties of polymer foam sandwich composites. J. Compos. Mater. 43(3), 289–300 (2009)CrossRefGoogle Scholar
  9. 9.
    Xiong, J., Ma, L., Wu, L.Z., Liu, J., Vaziri, A.: Mechanical behavior and failure of composite pyramidal truss core sandwich column. Compos. Part B Eng. 42, 938–945 (2011)CrossRefGoogle Scholar
  10. 10.
    Baral, N., Cartié, D.D.R., Partridge, I.K., Baley, C., Davies, P.: Improved impact performance of marine sandwich panels using through-thickness reinforcement: experimental results. Compos. Part B Eng. 41(2), 117–123 (2010)CrossRefGoogle Scholar
  11. 11.
    Nanayakkara, A., Feih, S., Mouritz, A.P.: Experimental impact damage study of Z-Pinned sandwich composites. J. Sandw. Struct. Mater. 14, 469–486 (2012)CrossRefGoogle Scholar
  12. 12.
    Du, L., Jiao, G.Q.: Indentation study of Z-Pin reinforced polymer foam core sandwich structures. Compos. A: Appl. Sci. Manuf. 40, 822–829 (2009)CrossRefGoogle Scholar
  13. 13.
    Partridge, I.K., Cartié, D.D.R.: Delamination resistant laminates by Z-fiber pinning. Part I manufacture and fracture performance. Compos. A: Appl. Sci. Manuf. 36(1), 55–64 (2005)CrossRefGoogle Scholar
  14. 14.
    Liu, T., Deng, Z.C., Lu, T.J.: Analytical modeling and finite element simulation of the plastic collapse of sandwich beams with pin-reinforced foam cores. Int. J. Solids Struct. 45, 5127–5151 (2008)CrossRefGoogle Scholar
  15. 15.
    Virakthi, A., Lee, S.W., Haldar, S., Bruck, H.A., Rahman, A.: Modeling of pin-facesheet interactions in K-Cor sandwich structures under compressive loading. In: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamic, and Materials Conference. Boston, Massachusetts (2013)Google Scholar
  16. 16.
    Haldara, S., Caputo, D., Buesking, K., Bruck, H.A.: Flexural behavior of singly curved X-Cor® sandwich composite structures: Experiment and finite element modeling. Compos. Struct. 129, 70–79 (2015)CrossRefGoogle Scholar
  17. 17.
    O’Brien, K.T., Paris, I.L.: Exploratory investigation of failure mechanisms in transition regions between solid laminates and X-cor® truss sandwich. Compos. Struct. 57, 189–204 (2002)CrossRefGoogle Scholar
  18. 18.
    Jain, L.K., Mai, Y.W.: On the effect of stitching on mode I delamination toughness of laminated composites. Compos. Sci. Technol. 51, 331–345 (1994)CrossRefGoogle Scholar
  19. 19.
    Liu, H.Y., Mai, Y.W.: Effects of z-pin reinforcement on interlaminar mode I delamination. Proceedings of the 13th international conference on composite materials (ICCM13). Beijing (2001)Google Scholar
  20. 20.
    Yan, W.Y., Liu, H.Y., Mai, Y.W.: Numerical study on the mode I delamination toughness of z-pinned laminates. Compos. Sci. Technol. 63, 1481–1493 (2003)CrossRefGoogle Scholar
  21. 21.
    Grassi, M., Zhang, X.: Finite element analyses of model I interlaminar delamination Z-fibre reinforced composite laminates. Compos. Sci. Technol. 63, 1815–1832 (2003)CrossRefGoogle Scholar
  22. 22.
    Dai, S.C., Yan, W.Y., Liu, H.Y., Mai, Y.W.: Experimental study on Z-Pin bridging law by pullout test. Compos. Sci. Technol. 64, 2451–2457 (2004)CrossRefGoogle Scholar
  23. 23.
    Cui, H., Lia, Y., Koussiosb, S., Zub, L., Beukersb, A.: Bridging micromechanisms of Z-pin in mixed mode delamination. Compos. Struct. 93, 2685–2695 (2011)CrossRefGoogle Scholar
  24. 24.
    Bianchi, F., Zhang, X.: Predicting mode-II delamination suppression in Z-pinned laminates. Compos. Sci. Technol. 72, 924–932 (2012)CrossRefGoogle Scholar
  25. 25.
    Yasaee, M., Lander, J.K., Allegri, G., Hallett, S.R.: Experimental characterization of mixed mode traction-displacement relationships for a single carbon composite Z-pin. Compos. Sci. Technol. 94, 123–131 (2014)CrossRefGoogle Scholar
  26. 26.
    Allegri, G., Yasaee, M., Partridge, I.K., Hallett, S.R.: A novel model of delamination bridging via Z-pins in composite laminates. Int. J. Solids Struct. 51, 3314–3332 (2014)CrossRefGoogle Scholar
  27. 27.
    SIMULIA: ABAQUS 6.11— Analysis User’s Manual. Dassault Systemes, Rhode Island (2011)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018
corrected publication September/2018

Authors and Affiliations

  1. 1.Key Laboratory of Small and Medium-Sized Unmanned Aerial Vehicle Advanced Technology, Ministry of Industry and Information TechnologyNanjing University of Aeronautics & AstronauticsNanjingChina
  2. 2.College of Material Science and TechnologyNanjing University of Aeronautics & AstronauticsNanjingChina

Personalised recommendations