Applied Composite Materials

, Volume 26, Issue 1, pp 273–297 | Cite as

Design Optimization and Development of Tubular Isogrid Composites Tubes for Lower Limb Prosthesis

  • Diego Morais Junqueira
  • Guilherme Ferreira GomesEmail author
  • Márcio Eduardo Silveira
  • Antonio Carlos AncelottiJr


From the beginnings of humanity, natural or unnatural misfortunes such as illnesses, wars, automobile accidents cause loss of body limbs like teeth, arms, legs, etc. The solution found for the replacement of these missing limbs is in the use of prostheses. Lower limbs tubes or pylons are prosthetics components that are claimed to support loads during walking and other daily tasks activities. Commonly, prosthetic tubes are manufactured using metal materials such as stainless steel, aluminum and titanium. The mass of these tubes is generally high compared to tubes made of carbon fiber reinforced polymer matrix (CFRP) composite. Therefore, this work has the objective of design, manufacturing and analyzing the feasibility of a new tube concept, made of composite material, which makes use of lattice structure and inner layer. Until the present moment, lower limb prosthesis tubes using lattice structure and ineer layer have never been studied and/or tested to date. It can be stated that the tube of rigid ribs with inner layer and angle of 40° is more efficient than those of 26° and 30°. The proposed design allows a structural weight reduction in high performance prostheses from 120 g to 40 g.


Pylon Transtibial prosthesis Lattice structure Isogrid Finite element method 



Angle of helical ribs with respect to the axial axis of the structure


Width of helical ribs


Width of circular ribs


Distance between helical ribs


Distance between circular ribs


Specific mass of the augers

\( \overline{h} \)

Average thickness of rigid ribs

\( \overline{\delta_h} \)

Average width of helical ribs

\( \overline{\delta_c} \)

Average width of circular ribs

\( \overline{\rho} \)

Average specific mass of rigid ribs


Helical ribs rupture stress


Circular ribs rupture stress


Diameter of the isogrid tube


Circular ribs modulus of elasticity


Modulus of elasticity of the helical ribs


Thickness of the isogrid


Buckling factor


Length of the isogrid tube


Structure mass


Loading factor



The authors would like to acknowledge the support from the National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Funding Authority for Studies and Projects (FINEP) for the project number 01.13.0169.00 and Altair Hyperworks®.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Gard, S.A., Konz, R.J.: The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. J. Rehabil. Res. Dev. 40(2), 109–124 (2003)CrossRefGoogle Scholar
  2. 2.
    Shasmin, N., et al.: A new pylon materials in transtibial prosthesis: a preliminary study. J. Biomech. 40, S297 (2007)CrossRefGoogle Scholar
  3. 3.
    Bliquez, L.V.: Classical prosthetics. Archaeol. Inst. Am. 36(5), 25–29 (1983)Google Scholar
  4. 4.
    Norton, K.: A brief history of prosthetics. InMotion. 17(7), 1–3 (2007)Google Scholar
  5. 5.
    Benhamou, R.: The artificial limb in preindustrial France. Technol. Cult. 35(4), 835–845 (1994)CrossRefGoogle Scholar
  6. 6.
    Nolan, L.: Carbon fibre prostheses and running in amputees: a review. Foot Ankle Surg. 14(3), 125–129 (2008)CrossRefGoogle Scholar
  7. 7.
    Phillips, V. L. Composite Prosthetic Foot and Leg USA (1983)Google Scholar
  8. 8.
    Vilagra, J., Sganzerla, C., Walcker, L.: Próteses transtibiais: itens de conforto e segurança. Rev. Thema Sci. 1(2), 107–112 (2011)Google Scholar
  9. 9.
    Scholz, M.S., Blanchfield, J.P., Bloom, L.D., Coburn, B.H., Elkington, M., Fuller, J.D., Gilbert, M.E., Muflahi, S.A., Pernice, M.F., Rae, S.I., Trevarthen, J.A., White, S.C., Weaver, P.M., Bond, I.P.: The use of composite materials in modern orthopaedic medicine and prosthetic devices: a review. Compos. Sci. Technol. 71(16), 1791–1803 (2011)CrossRefGoogle Scholar
  10. 10.
    Shasmin, H.N., Abu Osman, N.A., Abd Latif, L.: Economical tube adapter material in below knee prosthesis. IFMBE Proc. 21(1), 407–409 (2008)CrossRefGoogle Scholar
  11. 11.
    Giest, T.N., Chang, Y.H.: Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation. J. Biomech. 49(9), 1757–1764 (2016)CrossRefGoogle Scholar
  12. 12.
    Silverman, A.K., Neptune, R.R.: Muscle and prosthesis contributions to amputee walking mechanics: a modeling study. J. Biomech. 45(13), 2271–2278 (2012)CrossRefGoogle Scholar
  13. 13.
    Winter, D.A., Sienko, S.E.: Biomechanics of below-knee amputee gait. J. Biomech. 21(5), 361–367 (1988)CrossRefGoogle Scholar
  14. 14.
    Major, M.J., Twiste, M., Kenney, L.P., Howard, D.: Amputee independent prosthesis properties—a new model for description and measurement. J. Biomech. 44(14), 2572–2575 (2011)CrossRefGoogle Scholar
  15. 15.
    Carroll, K., Sabolich, S.: Below-Knee Prosthetics. Is It Time For An Upgrade? INMotion Mag. 9(4), 1 (1999)Google Scholar
  16. 16.
    Junqueira, D.M., Silveira, M.E., Ancelotti Junior, A.C.: Analysis of spot-weld distribution in a weldment — numerical simulation and topology optimization. Int. J. Adv. Manuf. Technol. 1, 1–9 (2018)Google Scholar
  17. 17.
    Lee, W.C.C., Zhang, M.: Fatigue test of low-cost flexible-shank monolimb transtibial prosthesis. Prosthetics Orthot. Int. 30(3), 305–315 (2006)CrossRefGoogle Scholar
  18. 18.
    Rothschild, V., et al.: Clinical experience with total thermoplastic lower limb prostheses. J. Prosthet. Orthot. 3(1), 51–54 (1990)CrossRefGoogle Scholar
  19. 19.
    Valenti, T.: Experience with Endoflex: A Monolithic Thermoplastic for Below-Knee Amputees. J. Prosthet. Orthot. 3(1), 43–50 (1990)CrossRefGoogle Scholar
  20. 20.
    Ancelotti, A. C. Efeitos da porosidade na resistência ao cisalhamento e nas propriedades dinâmicas de compósitos de fibra de carbono/resina epóxi – Doctoral Thesis-Technological Institute of Aeronautics (2006)Google Scholar
  21. 21.
    Lebrão, G. W.: Viabilidade De Fabricação De Tubo Para Prótese De Membro Inferior Em Compósito Híbrido Epóxi Carbono-Vidro. [s.l.], Doctoral Thesis - Universidade de São Paulo (2007).
  22. 22.
    Martins, A. T. D.: Projeto e Fabricação de Tubos Compósitos em Fibras de Carbono/Epóxi para Próteses Transtibiais por Moldagem com Bladder. Master in Engineering Thesis - Universidade Federal de Itajubá (2015)Google Scholar
  23. 23.
    Wilson, M. T.: Composite pylon for a prosthetic device. U.S. Patent Application n. 14/483,281, 12 mar. 2015Google Scholar
  24. 24.
    Fey, N.P., Klute, G.K., Neptune, R.R.: The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Clin. Biomech. 26(10), 1025–1032 (2011)CrossRefGoogle Scholar
  25. 25.
    Sam, M., Childress, D., Hansen, A., Meier, M., Lambla, S., Grahn, E., Rolock, J.: The “Shape & Roll” prosthetic foot: I. Design and development of appropriate Technology for low-Income Countries. Med. Conflict Surviv. 20(4), 294–306 (2004)CrossRefGoogle Scholar
  26. 26.
    Kobayashi, T., Orendurff, M.S., Zhang, M., Boone, D.A.: Effect of alignment changes on sagittal and coronal socket reaction moment interactions in transtibial prostheses. J. Biomech. 46(7), 1343–1350 (2013)CrossRefGoogle Scholar
  27. 27.
    Kobayashi, T., Orendurff, M.S., Arabian, A.K., Rosenbaum-Chou, T.G., Boone, D.A.: Effect of prosthetic alignment changes on socket reaction moment impulse during walking in transtibial amputees. J. Biomech. 47(6), 1315–1323 (2014)CrossRefGoogle Scholar
  28. 28.
    Schwarze, M., Hurschler, C., Seehaus, F., Oehler, S., Welke, B.: Loads on the prosthesis-socket interface of above-knee amputees during normal gait: validation of a multi-body simulation. J. Biomech. 46(6), 1201–1206 (2013)CrossRefGoogle Scholar
  29. 29.
    Coleman, K.L., Boone, D.A., Smith, D.G., Czerniecki, J.M.: Effect of transtibial prosthesis pylon flexibility on ground reaction forces during gait. Prosthetics Orthot. Int. 25(3), 195–201 (2001)CrossRefGoogle Scholar
  30. 30.
    Gomes, G.F., Diniz, C.A., da Cunha, S.S., Ancelotti, A.C.: Design optimization of composite prosthetic tubes using GA-ANN algorithm considering Tsai-Wu failure criteria. J. Fail. Anal. Prev. 17(4), 740–749 (2017)CrossRefGoogle Scholar
  31. 31.
    Berge, J.S., Klute, G.K., Czerniecki, J.M.: Mechanical properties of shock-absorbing pylons used in transtibial prostheses. J. Biomech. Eng. 126(1), 120–122 (2004)CrossRefGoogle Scholar
  32. 32.
    Zheng, Q., Jiang, D., Huang, C., Shang, X., Ju, S.: Analysis of failure loads and optimal design of composite lattice cylinder under axial compression. Compos. Struct. 131, 885–894 (2015)CrossRefGoogle Scholar
  33. 33.
    Totaro, G.: Local buckling modelling of isogrid and anisogrid lattice cylindrical shells with triangular cells. Compos. Struct. 94, 446–452 (2012)CrossRefGoogle Scholar
  34. 34.
    Fan, H., Fang, D., Chen, L., Dai, Z., Yang, W.: Manufacturing and testing of a CFRC sandwich cylinder with Kagome cores. Compos. Sci. Technol. 69(15–16), 2695–2700 (2009)CrossRefGoogle Scholar
  35. 35.
    Totaro, G., De Nicola, F., Caramuta, P.: Local buckling modelling of anisogrid lattice structures with hexagonal cells: an experimental verification. Compos. Struct. 106, 734–741 (2013)CrossRefGoogle Scholar
  36. 36.
    Huybrechts, S. M.; Hahn, S. E.; Meink, T. E. Grid stiffened structures: a Survay of fabrication, analysis and design methods. 12 ICCM Proceedings, (1999)Google Scholar
  37. 37.
    Huybrechts, S.M., Meink, T.E., Wegner, P.M., Ganley, J.M.: Manufacturing theory for advanced grid stiffened structures. Compos Part A. 33(2), 155–161 (2002)CrossRefGoogle Scholar
  38. 38.
    Meyer, R. R.: McDonnell Douglas Astronautics Company, Isogrid Design Handbook. NASA Contractor Report, CIR-124075, Revision A (1973)Google Scholar
  39. 39.
    Vasiliev, V. V.; Razin, A. F. Optimal design of filament-wound anisogrid composite lattice structures. Proceedings of the 16th annual technical conference of American society for composites. Blacksburg USA, (2001)Google Scholar
  40. 40.
    Vasiliev, V.V., Razin, A.F.: Anisogrid composite lattice structures for spacecraft and aircraft applications. Compos. Struct. 76(1–2), 182–189 (2006)CrossRefGoogle Scholar
  41. 41.
    Madhavi, M., Rao, K.V.J., Rao, K.N.: Design and analysis of filament wound composite pressure vessel with integrated-end domes. Def. Sci. J. 59(1), 73–81 (2009)CrossRefGoogle Scholar
  42. 42.
    Sorrentino, L., Marchetti, M., Bellini, C., Delfini, A., Albano, M.: Design and manufacturing of an isogrid structure in composite material: numerical and experimental results. Compos. Struct. 143, 189–201 (2016)CrossRefGoogle Scholar
  43. 43.
    Silveira, M.E., Fancello, E.A.: O uso de otimização numérica no projeto de blanks soldados. Cienc. Eng/Sci. Eng. J. 24(1), 9–19 (2015)Google Scholar
  44. 44.
    Tsai, S.W., Wu, E.M.: A general theory of strength for anisotropic materials. J. Compos. Mater. 5(1), 58–80 (1971)CrossRefGoogle Scholar
  45. 45.
    Handbook, Military. "MIL-HDBK-17-2F: composite materials handbook." Polym. Matrix. Compos. Mater. Usage. Des. Anal. 17 (2002)Google Scholar
  46. 46.
    NBR ISO 10328-1: Próteses - Ensaio Estrutural para Próteses de Membro Inferior: configurações de ensaio. Associação Brasileira de Normas Técnicas, Rio de Janeiro (2002)Google Scholar
  47. 47.
    D’Angeli, V., Belvedere, C., Ortolani, M., Giannini, S., Leardini, A.: Load along the femur shaft during activities of daily living. J. Biomech. 46(12), 2002–2010 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Diego Morais Junqueira
    • 1
  • Guilherme Ferreira Gomes
    • 1
    Email author
  • Márcio Eduardo Silveira
    • 2
  • Antonio Carlos AncelottiJr
    • 1
  1. 1.Mechanical Engineering InstituteFederal University of Itajubá (UNIFEI)ItajubáBrazil
  2. 2.Department of Mechanical EngineeringFederal University of São João Del-Rey (UFSJ)São João Del ReiBrazil

Personalised recommendations