Applied Composite Materials

, Volume 26, Issue 1, pp 187–204 | Cite as

A Comparison of the Properties of Carbon Fiber Epoxy Composites Produced by Non-autoclave with Vacuum Bag Only Prepreg and Autoclave Process

  • Sang Yoon ParkEmail author
  • Chi Hoon Choi
  • Won Jong Choi
  • Seong Soon Hwang


The non-autoclave curing technique with vacuum bag only (VBO) prepreg has been conceived as a cost-effective manufacturing method for producing high-quality composite part. This study demonstrated the feasibility of improving composite part’s performances and established the effective mitigation strategies for manufacturing induced defects, such as internal voids and surface porosity. The experimental results highlighted the fact that voids and surface porosity were clearly dependent on the resin viscosity state at an intermediate dwell stage of the curing process. Thereafter, the enhancement of resin flow could lead to achieving high quality parts with minimal void content (1.3%) and high fiber fraction (53 vol.%). The mechanical testing showed comparable in-plane shear and compressive strength to conventional autoclave. The microscopic observations also supported the evidence of improved interfacial bonding in terms of excellent fiber wet-out and minimal void content for the optimized cure cycle condition.


VBO prepreg Viscosity Cure cycle Void content Mechanical properties 


  1. 1.
    Varvani-Farahani, A.: Composite materials: characterization, fabrication and application-research challenges and directions. Appl. Compos. Mater. 17(2), 63–67 (2010)CrossRefGoogle Scholar
  2. 2.
    Lachaud, F., Espinosa, C., Michel, L., Rahme, P., Piquet, R.: Modelling strategies for predicting the residual strength of impacted composite aircraft fuselages. Appl. Compos. Mater. 22(6), 599–621 (2015)CrossRefGoogle Scholar
  3. 3.
    Alderliesten, R.C.: Critical review on the assessment of fatigue and fracture in composite materials and structures. Eng. Fail. Anal. 35(15), 370–379 (2013)CrossRefGoogle Scholar
  4. 4.
    Grunenfelder, L.K., Dills, A., Centea, T., Nutt, S.R.: Effect of prepreg format on defect control in out-of-autoclave processing. Compos. A: Appl. Sci. Manuf. 93, 88–99 (2017)CrossRefGoogle Scholar
  5. 5.
    Aleksendrić, D., Carlone, P., Ćirović, V.: Optimization of the temperature-time curve for the curing process of thermoset matrix composites. Appl. Compos. Mater. 23(5), 1047–1063 (2016)CrossRefGoogle Scholar
  6. 6.
    Bodaghi, M., Cristóvão, C., Gomes, R., Correia, N.C.: Experimental characterization of voids in high fibre volume fraction composites processed by high injection pressure RTM. Compos Part A. Appl. Sci. Manuf. 82, 88–99 (2016)CrossRefGoogle Scholar
  7. 7.
    Marsh, G.: De-autoclaving’ prepreg processing. Reinf. Plast. 56(5), 20–25 (2012)CrossRefGoogle Scholar
  8. 8.
    Xu, X., Wang, X., Liu, W., Zhang, X., Li, Z., Du, S.: Microwave curing of carbon fiber/bismaleimide composite laminates: material characterization and hot pressing pretreatment. Mater. Des. 97(5), 316–323 (2016)CrossRefGoogle Scholar
  9. 9.
    Grunenfelder, L.K., Nutt, S.R.: Void formation in composite prepregs – effect of dissolved moisture. Compos. Sci. Technol. 70(16), 2304–2309 (2010)CrossRefGoogle Scholar
  10. 10.
    Helmus, R., Centea, T., Hubert, P., Hinterhölzl, R.: Out-of-autoclave prepreg consolidation: coupled air evacuation and prepreg impregnation modeling. J. Compos. Mater. 50(10), 1403–1413 (2015)CrossRefGoogle Scholar
  11. 11.
    Garschke, C., Weimer, C., Parlevliet, P.P., Fox, B.L.: Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring. Compos Part A. Appl. Sci. Manuf. 43(6), 935–944 (2012)CrossRefGoogle Scholar
  12. 12.
    Han, K., Jiang, S., Zhang, C., Wang, B.: Flow modeling and simulation of SCRIMP for composites manufacturing. Compos Part A. Appl. Sci. Manuf. 31(1), 79–86 (2000)CrossRefGoogle Scholar
  13. 13.
    Li, W., Krehl, J., Gillespie, J.W., Heider, D., Endrulat, M., Hochrein, K., Dunham, M.G., Dubois, C.J.: Process and performance evaluation of the vacuum-assisted process. J. Compos. Mater. 38(20), 1803–1814 (2004)CrossRefGoogle Scholar
  14. 14.
    Centea, T., Nutt, S.R.: Manufacturing cost relationships for vacuum bag-only prepreg processing. J. Compos. Mater. 50(17), 2305–2321 (2015)CrossRefGoogle Scholar
  15. 15.
    Thomas, S., Nutt, S.R.: Temperature dependence of resin flow in a resin film infusion (RFI) process by ultrasound imaging. Appl. Compos. Mater. 16(3), 183–196 (2009)CrossRefGoogle Scholar
  16. 16.
    Ridgard, C.: Out of autoclave composite technology for aerospace, defense and space structures. In: Proceeding of SAMPE Conference, Baltimore, MD (2009)Google Scholar
  17. 17.
    Ridgard, C.: Next generation out of autoclave systems. In: Proceeding of SAMPE Conference, Seattle, WA (2010)Google Scholar
  18. 18.
    Kratz, J., Hsiao, K., Fernlund, G., Hubert, P.: Thermal models for MTM45-1 and Cycom 5320 out-of-autoclave prepreg resins. J. Compos. Mater. 47, 341–352 (2012)CrossRefGoogle Scholar
  19. 19.
    Agius, S.L., Magniez, K.J.C., Fox, B.L.: Cure behaviour and void development within rapidly cured out-of-autoclave composites. Compos. Part B. 47, 230–237 (2013)CrossRefGoogle Scholar
  20. 20.
    Cong, J., Zhang, B.: Methodology for evaluating manufacturability of composite materials. Appl. Compos. Mater. 19(3–4), 189–201 (2012)CrossRefGoogle Scholar
  21. 21.
    Guo, Z.S., Liu, L., Zhang, B.M., Du, S.: Critical void content for thermoset composite laminates. J. Compos. Mater. 43(17), 1775–1790 (2006)Google Scholar
  22. 22.
    Hernández, S., Sket, F., González, C., Llorca, J.: Optimization of curing cycle in carbon fiber-reinforced laminates: void distribution and mechanical properties. Compos. Sci. Technol. 85(21), 73–82 (2013)CrossRefGoogle Scholar
  23. 23.
    Jeong, H.: Effects of voids on the mechanical strength and ultrasonic attenuation of laminated composites. J. Compos. Mater. 31(3), 276–292 (1997)CrossRefGoogle Scholar
  24. 24.
    Park, S.Y., Choi, W.J., Choi, H.S.: The effects of void contents on the long-term hygrothermal behaviors of glass/epoxy and GLARE laminates. Compos. Struct. 92(1), 18–24 (2010)CrossRefGoogle Scholar
  25. 25.
    Costa, M.L., Rezende, M.C., De Almeida, S.F.M.: Strength of hygrothermally conditioned polymer composites with voids. J. Compos. Mater. 39(21), 1943–1961 (2005)CrossRefGoogle Scholar
  26. 26.
    Pang, K.P., Gillham, J.K.: Competition between cure and thermal degradation in a high Tg epoxy system: effect of time and temperature of isothermal cure on the glass transition temperature. J. Appl. Polym. Sci. 39(4), 909–933 (1990)CrossRefGoogle Scholar
  27. 27.
    Yenilmez, B., Senan, M., Sozer, E.M.: Variation of part thickness and compaction pressure in vacuum infusion process. Compos. Sci. Technol. 69(11–12), 1710–1719 (2009)CrossRefGoogle Scholar
  28. 28.
    Kim, D., Centea, T., Nutt, S.R.: Out-time effects on cure kinetics and viscosity for an out-of-autoclave (OOA) prepreg: modelling and monitoring. Compos. Sci. Technol. 100(21), 63–69 (2014)CrossRefGoogle Scholar
  29. 29.
    Kim, D., Centea, T., Nutt, S.R.: Effects of out-time on viscosity, gelation and vitrification. Compos. Sci. Technol. 102(6), 132–138 (2014)CrossRefGoogle Scholar
  30. 30.
    Garschke, C., Parlevliet, P.P., Weimer, C., Fox, B.L.: Cure kinetics and viscosity modelling of a high-performance epoxy resin film. Polym. Test. 32(1), 150–157 (2013)CrossRefGoogle Scholar
  31. 31.
    AITM 3-0002. Analysis of non metallic materials (uncured) by differential scanning calorimetry. Airbus Industry, France (1997)Google Scholar
  32. 32.
    Abouhamzeh, M., Sinke, J., Jansen, K.M.B., Benedictus, R.: Kinetic and thermo-viscoelastic characterisation of the epoxy adhesive in GLARE. Compos. Struct. 124, 19–28 (2015)CrossRefGoogle Scholar
  33. 33.
    Xie, M., Zhang, Z., Gu, Y., Li, M., Su, Y.: A new method to characterize the cure state of epoxy prepreg by dynamic mechanical analysis. Thermochim. Acta. 487(1–2), 8–17 (2009)CrossRefGoogle Scholar
  34. 34.
    Boey, F.Y.C., Qiang, W.: Experimental modeling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer. 41, 2081–2094 (2000)CrossRefGoogle Scholar
  35. 35.
    Alavi-Soltani, S., Sabzevari, S., Koushyar, H., Minaie, B.: Thermal, rheological, and mechanical properties of a polymer composite cured at different isothermal cure temperatures. J. Compos. Mater. 46(5), 575–587 (2011)CrossRefGoogle Scholar
  36. 36.
    ASTM D3529/D3529M-97: Standard test method for matrix solids content and matrix content of composite prepreg. ASTM International, West Conshohocken (1997)Google Scholar
  37. 37.
    ASTM D3530-97: Standard test method for volatiles content of composite material prepreg. ASTM International, West Conshohocken (2015)Google Scholar
  38. 38.
    Hamill, L., Centea, T., Nutt, S.R.: Surface porosity during vacuum bag-only prepreg processing: Causes and mitigation strategies. Compos Part A. Appl. Sci. Manuf. 7, 1–10 (2015)CrossRefGoogle Scholar
  39. 39.
    Tomblin, J.S., Ng, Y.C., Raju, K.S.: Material qualification and equivalency for polymer matrix composite material systems: updated procedure (report no.: DOT/FAA/AR-03/19). U.S. Department of Transportation, Washington, D.C (2003)Google Scholar
  40. 40.
    ASTM D792-13: Standard test methods for density and specific gravity (relative density) of plastics by displacement. ASTM International, West Conshohocken (2013)Google Scholar
  41. 41.
    ASTM D3171-15: Standard test methods for constituent content of composite materials. ASTM International, West Conshohocken (2015)Google Scholar
  42. 42.
    ASTM D2734-16: Standard test methods for void content of reinforced plastics. ASTM International, West Conshohocken (2016)Google Scholar
  43. 43.
    AITM1-0003. Determination of the glass transition temperatures (DMA). Airbus Industry, France (1997)Google Scholar
  44. 44.
    ASTM D3518-13: Standard test methods for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate. ASTM International, West Conshohocken (2013)Google Scholar
  45. 45.
    ASTM D6641-16: Standard test methods for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture. ASTM International, West Conshohocken (2016)Google Scholar
  46. 46.
    MIL-HDBK-17-1F. Composite materials handbook, Volume 1, polymer matrix composites guidelines for characterization of structural materials. U.S. Department of Defense, Washington, D.C (2002)Google Scholar
  47. 47.
    Costa, M.L., Rezende, M.C., Almeida, S.F.M.: Effect of void content on the moisture absorption in polymeric composites. Polym. Plast. Technol. Eng. 45(6), 691–698 (2006)CrossRefGoogle Scholar
  48. 48.
    Liu, L., Zhang, B.M., Wang, D.F., Wu, Z.J.: Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 73(3), 303–309 (2006)CrossRefGoogle Scholar
  49. 49.
    Choi, H.S., Ahn, K.J., Nam, J.D., Chun, H.J.: Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Compos Part A. Appl. Sci. Manuf. 32(5), 709–720 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hyundai Automotive Research & Development DivisionHwaseong-SiSouth Korea
  2. 2.Department of Materials EngineeringKorea Aerospace UniversityGoyang-siSouth Korea

Personalised recommendations