Applied Composite Materials

, Volume 26, Issue 1, pp 15–27 | Cite as

Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone

  • Zhong HuEmail author
  • Varun Kumar Gadipudi
  • David R. Salem


Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.


Lightweight lattice structure Discontinuous fiber reinforced polymer composites Topology optimization Cuttlefish bone 



The authors gratefully acknowledge generous support from the Composite and Nanocomposite Advanced Manufacturing Center (CNAM) (Grant number SA1800366), a South Dakota governor’s center, and from the Department of Mechanical Engineering at South Dakota State University. The computational facility and technical support provided by the University High Performance Computing at South Dakota State University are also gratefully acknowledged.


  1. 1.
    Committee on National Aeronautics and Space Administration (NASA) Technology roadmaps.: 2015 NASA technology roadmaps: Technology area 12-materials, structures, mechanical systems, and manufacturing. pp. TA12-1-TA12-138. NASA, Washington, D.C (2015)Google Scholar
  2. 2.
    González, C., Vilatela, J.J., Molina-Aldareguía, J.M., Lopes, C.S., LLorca, J.: Structural composites for multifunctional applications: current challenges and future trends. Prog. Mater. Sci. 89, 194–251 (2017)CrossRefGoogle Scholar
  3. 3.
    Gibson, R.F.: A review of recent research on mechancis of multifunctional composite materials and structures. Compos. Struct. 92, 2793–2810 (2010)CrossRefGoogle Scholar
  4. 4.
    Bhat, G. (ed.): Structure and Properties of High-Performance Fibers. Elsevier, Amsterdam (2017)Google Scholar
  5. 5.
    LLorca, J., González, C., Molina-Aldareguía, J.M., Segurado, J., Seltzer, R., Sket, F., Rodríguez, M., Sádaba, S., Muñoz, R., Canal, L.P.: Multiscale modeling of composite materials: a roadmap towards virtual testing. Adv. Mater. 23, 5130–5147 (2011)CrossRefGoogle Scholar
  6. 6.
    LLorca, J., González, C., Molina-Aldareguía, J.M., Lopes, C.S.: Multiscale modeling of composites. JOM. 65, 215–225 (2013)CrossRefGoogle Scholar
  7. 7.
    Espinosa, H.D., Juster, A.L., Latourte, F.J., Loh, O.Y., Gregoire, D., Zavattieri, P.D.: Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nat. Commun. 2, 173 (2011) (9 pages)CrossRefGoogle Scholar
  8. 8.
    Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., Wadley, H.N.G.: The topological design of multifunctional cellular metals. Prog. Mater. Sci. 46, 309–327 (2001)CrossRefGoogle Scholar
  9. 9.
    Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. In: Clarke, D., Suresh, S., Ward, I. (eds.) Part of Cambridge Solid State Science Series, 2nd edn. Cambridge University Press, Cambridge (1997)Google Scholar
  10. 10.
    Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., Christ, H.-J., Wu, L.: Advanced micro-lattice materials. Adv. Eng. Mater. 17(9), 1253–1264 (2015)CrossRefGoogle Scholar
  11. 11.
    Xiong, J., Ma, L., Pan, S.D., Wu, L.Z., Papadopoulos, J., Vaziri, A.: Shear and bending performance of carbon fiber composite sandwich panels with pyramidal truss cores. Acta Mater. 60, 1455–1466 (2012)CrossRefGoogle Scholar
  12. 12.
    Xiong, J., Vaziri, A., Ma, L., Papadopoulos, J., Wu, L.Z.: Compression and impact testing of two-layer composite pyramidal-core sandwich panels. Compos. Struct. 94, 793–801 (2012)CrossRefGoogle Scholar
  13. 13.
    Cheung, K.C., Gershenfeld, N.: Reversibly assembled cellular composite materials. Science. 341, 1219–1221 (2013)CrossRefGoogle Scholar
  14. 14.
    Wei, K., Chen, X., Mo, F., Wen, W., Fang, D.: Design and analysis of integrated thermal protection system based on lightweight C-SiC pyramidal lattice core sandwich panel. Mater. Des. 111, 435–444 (2016)CrossRefGoogle Scholar
  15. 15.
    Barthelat, F.: Architectured materials in engineering and biology: fabrication, structure, mechanics and performance. Int. Mater. Rev. 60(8), 413–430 (2015)CrossRefGoogle Scholar
  16. 16.
    Sen, S., Schofield, E., O'Dell, J.S., Deka, L., Pillay, S.: The development of a multifunctional composite material for use in human space exploration beyond low-earth orbit. JOM. 61(1), 23–31 (2009)CrossRefGoogle Scholar
  17. 17.
    Nakajima, H.: Fabrication, properties and application of porous metals with directional pores. Prog. Mater. Sci. 52, 1091–1173 (2007)CrossRefGoogle Scholar
  18. 18.
    Smith, B.H., Szyniszewski, S., Hajjar, J.F., Schafer, B.W., Arwade, S.R.: Steel foam for structures: a review of applications, manufacturing and material properties. J. Constr. Steel Res. 71, 1–10 (2012)CrossRefGoogle Scholar
  19. 19.
    Cadman, J.: The design of cellular materials inspired by nature-characterisation, fabrication and application. Ph.D. Dissertation, The University of Sydney, Sydney, Australia (2012)Google Scholar
  20. 20.
    Sun, X., Liang, W.: Cellular structure control and sound absorption of polyolefin microlayer sheets. Compos. Part B. 87, 21–26 (2016)CrossRefGoogle Scholar
  21. 21.
    Benyus, J.M.: Biomimicry: Innovation Inspired by Nature. Perennial, HarperCollins Publishers Inc., New York, NY (2002)Google Scholar
  22. 22.
    Hu, Z., Thiyagarajan, K., Bhusal, A., Letcher, T., Fan, Q.F., Liu, Q., Salem, D.: Design of ultra-lightweight and high-strength cellular structural composites inspired by biomimetics. Compos. Part B. 121, 108–121 (2017)CrossRefGoogle Scholar
  23. 23.
    Mittal, V., Saini, R., Sinha, S.: Natural fiber-mediated epoxy composites: a review. Compos. Part B. 99, 425–435 (2016)CrossRefGoogle Scholar
  24. 24.
    Mayer, G.: New classes of tough composite materials – lessons from natural rigid biological systems. Mater. Sci. Eng. C. 26(8), 1261–1268 (2006)CrossRefGoogle Scholar
  25. 25.
    Cheung, H.-A., Lau, K.-T., Lu, T.-P., Hui, D.: A critical review on polymer-based bio-engineered materials for scaffold development. Compos. Part B. 38(3), 291–300 (2007)CrossRefGoogle Scholar
  26. 26.
    Huda, S., Reddy, N., Yang, Y.: Ultra-light-weight composites from bamboo strips and polypropylene web with exceptional flexural properties. Compos. Part B. 43(3), 1658–1664 (2012)CrossRefGoogle Scholar
  27. 27.
    Koronis, G., Silva, A., Fontul, M.: Green composites: a review of adequate materials for automotive applications. Compos. Part B. 44(1), 120–127 (2013)CrossRefGoogle Scholar
  28. 28.
    Okereke, M.I., Akpoyomare, A.I., Bingley, M.S.: Virtual testing of advanced composites, cellular materials and biomaterials: a review. Compos. Part B. 60, 637–662 (2014)CrossRefGoogle Scholar
  29. 29.
    Affatato, S., Ruggiero, A., Merola, M.: Advanced biomaterials in hip joint arthroplasty: a review on polymer and ceramics composites as alternative bearings. Compos. Part B. 83, 276–283 (2015)CrossRefGoogle Scholar
  30. 30.
    Burns, L., Mouritz, A.P., Pook, D., Feih, S.: Bio-inspired hierarchical design of composite T-joints with improved structural properties. Compos. Part B. 69, 222–231 (2015)CrossRefGoogle Scholar
  31. 31.
    Rocha, J.H.G., Lemos, A.F., Agathopoulos, S., Ferreira, J.M.F.: Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J. Mater. Chem. 15, 5007–5011 (2005)CrossRefGoogle Scholar
  32. 32.
    Cadman, J., Zhou, S., Chen, Y., Li, Q.: Cuttlebone: characterisation, application and development of biomimetic materials. J. Bionic Eng. 09, 367–376 (2012)CrossRefGoogle Scholar
  33. 33.
    Checa, A.G., Cartwright, J.H.E., Sánchez-Almazo, I., Andrade, J.P., Ruiz-Raya, F.: The cuttlefish Sepia officinalis (Sepiidae, Cephalopoda) constructs cuttlebone from a liquid-crystal precursor. Sci. Rep. 5, 11513 (2015) (13 pages)CrossRefGoogle Scholar
  34. 34.
    Sherrard, K.M.: Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). Biol. Bull. 198(3), 404–414 (2000)CrossRefGoogle Scholar
  35. 35.
    Bendsøe, M.P., Sigmund, O.: Topology Optimization, Theory, Methods and Applications. Springer, Berlin Heidelberg New York (2003)Google Scholar
  36. 36.
    Zhang, W., Wang, F., Dai, G., Sun, S.: Topology optimal design of material microstructures using strain energy-based method. Chin. J. Aeronaut. 20, 320–326 (2007)CrossRefGoogle Scholar
  37. 37.
    Setoodeh, S., Abdalla, M.M., Gürdal, Z.: Combined topology and fiber path design of composite layers using cellular automata. Struc. Multidiscip. Optim. 30, 413–421 (2005)CrossRefGoogle Scholar
  38. 38.
    Rodrigues, H. C.: Chapter: Topology optimization of structures: applications in the simulation and design of cellular materials. In the book of Computational Methods in Engineering and Science. Proceedings of Enhancement and promotion of computational methods in engineering and science X (EPMESC X), August 21–23, 2006, Sanya, China. pp. 101–112, Springer, Berlin (2007)Google Scholar
  39. 39.
    Otomori, M., Andkjær, J., Sigmund, O., Yamada, T., Izui, K., Nishiwaki, S.: Topology optimization for the microstructure design of plasmonic composites. 10th World Congress on Structural and Multidisciplinary Optimization, May 19–24, 2013, Orlando, Florida, USAGoogle Scholar
  40. 40.
    Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer-Verlag, Berlin Heidelberg (1995)CrossRefGoogle Scholar
  41. 41.
    Rozvany, G.I.N.: Aims, scope, methods, history and unified terminology of computer aided topology optimization in structural mechanics. Struct. Multidiscip. Optim. 21(2), 90–108 (2001)CrossRefGoogle Scholar
  42. 42.
    ANSYS Inc.: Theory reference – ANSYS 17.0, Cabibsburg, PA, USA (2016)Google Scholar
  43. 43.
    X. Li, L.Zhao, Z. Liu, Topology optimization of continuum structure based on ANSYS, MATEC Web of Conferences, 95(2017)07020. (4 pages)Google Scholar
  44. 44.
    Hu, Z., Hossan, M.R.: Strength evaluation and failure prediction of short carbon fiber reinforced nylon spur gears by finite element modeling. Appl. Compos. Mater. 20(3), 315–330 (2013)CrossRefGoogle Scholar
  45. 45.
    American Society for Testing and Materials.: ASTM D 3039: Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSouth Dakota State UniversityBrookingsUSA
  2. 2.Composite and Nanocomposite Advanced Manufacturing (CNAM) CenterRapid CityUSA
  3. 3.Department of Materials & Metallurgical EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  4. 4.Chemical & Biological Engineering DepartmentSouth Dakota School of Mines and TechnologyRapid CityUSA
  5. 5.Composite and Polymer Engineering LaboratorySouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations