Advertisement

Optimality Models and the Propensity Interpretation of Fitness

  • Ariel Jonathan RofféEmail author
  • Santiago Ginnobili
Regular Article

Abstract

The propensity account of fitness intends to solve the classical tautologicity issue by identifying fitness with a disposition, the ability to survive and reproduce. As proponents recognized early on, this account requires operational independence from actual reproductive success to avoid circularity and vacuousness charges. They suggested that operational independence is achieved by measuring fitness values through optimality models. Our goal in this article is to develop this suggestion. We show that one plausible procedure by which these independent operationalizations could be thought to take place, and which is in accordance with what is said in the optimality literature, is unsound. We provide two independent lines of reasoning to show this. We then provide a sketch of a more adequate account of the role of optimality models in evolutionary contexts and draw some consequences.

Keywords

Fitness Natural selection Optimality models Propensity interpretation of fitness Population genetics Optimal foraging theory 

Notes

Acknowledgements

This work has been funded by the research projects PUNQ 1401/15 and SAI 827-223/19 (National University of Quilmes, Argentina), UNTREF 32/15 255 (Universidad Nacional Tres de Febrero, Argentina) and UBACyT 20020170200106BA (Universidad de Buenos Aires, Argentina).

References

  1. Beatty J (1980) Optimal-design models and the strategy of model building in evolutionary biology. Philos Sci 47(4):532–561CrossRefGoogle Scholar
  2. Bolduc J-S, Cézilly F (2012) Optimality modelling in the real world. Biol Philos 27(6):851–869CrossRefGoogle Scholar
  3. Brandon R (1978) Adaptation and evolutionary theory. Stud Hist Philos Sc 9:181–206CrossRefGoogle Scholar
  4. Brandon R (2006) The principle of drift: biology’s first law. J Philos 103(7):319–335CrossRefGoogle Scholar
  5. Brandon R, Beatty J (1984) The propensity interpretation of ‘fitness’—no interpretation is no substitute. Philos Sci 51(2):342–347CrossRefGoogle Scholar
  6. Casanueva M (2011) A structuralist reconstruction of the mechanism of natural selection in set theory and graph formats. In: Martinez J, Ponce de León A (eds) Darwin’s evolving legacy. Siglo XXI, México, pp 177–192Google Scholar
  7. Díez J, Lorenzano P (2013) Who got what wrong? Fodor and Piattelli on Darwin: guiding principles and explanatory models in natural selection. Erkenntnis 78:1143–1175CrossRefGoogle Scholar
  8. Fodor J, Piattelli-Palmarini M (2010) What Darwin got wrong. Farrar, Straus and Giroux, New YorkGoogle Scholar
  9. Futuyma DJ (2005) Evolution. Sinauer Associates Inc, SunderlandGoogle Scholar
  10. Ginnobili S (2016) Missing concepts in natural selection theory reconstructions. Hist Philos Life Sci.  https://doi.org/10.1007/s40656-016-0109-y CrossRefGoogle Scholar
  11. Gray RD (1987) Faith and foraging: a critique of the ‘paradigm argument from design’. In: Kamil AC, Krebs JR, Pulliam HR (eds) Foraging behavior. Springer, US, pp 69–140CrossRefGoogle Scholar
  12. Holling CS (1964) The analysis of complex population processes. Can Entomol 96(1–2):335–347CrossRefGoogle Scholar
  13. Labouygues J-M, Figureau A (1984) The logic of the genetic code: synonyms and optimality against effects of mutations. Orig Life 14(1):685–692CrossRefGoogle Scholar
  14. Maynard Smith J (1978) Optimization theory in evolution. Annu Rev Ecol Syst 9:31–56CrossRefGoogle Scholar
  15. McNamara JM, Houston AI, Collins S (2001) Optimality models in behavioral biology. SIAM Rev 43(3):413–466CrossRefGoogle Scholar
  16. McShea D, Brandon R (2010) Biology’s first law. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  17. Mills SK, Beatty JH (1979) The propensity interpretation of fitness. Philos Sci 46(2):263–286CrossRefGoogle Scholar
  18. Millstein RL (2016) Probability in biology: the case of fitness. In: Hájek A, Hitchcock CR (eds) The oxford handbook of probability and philosophy. Oxford University Press, Oxford, pp 601–622Google Scholar
  19. Mivart GJ (1898) The groundwork of science. John Murray, New YorkGoogle Scholar
  20. Parker GA, Maynard Smith J (1990) Optimality theory in evolutionary biology. Nature 348:27–33CrossRefGoogle Scholar
  21. Pence CH, Ramsey G (2013) A new foundation for the propensity interpretation of fitness. Br J Philos Sci 64(4):851–881CrossRefGoogle Scholar
  22. Peters RH (1976) Tautology in evolution and ecology. Am Nat 110(971):1–12CrossRefGoogle Scholar
  23. Popper KR (1974) Unended quest: an intellectual autobiography. Open Court, La SalleGoogle Scholar
  24. Potochnik A (2009) Optimality modeling in a suboptimal world. Biol Philos 24(2):183–197CrossRefGoogle Scholar
  25. Rice C (2012) Optimality explanations: a plea for an alternative approach. Biol Philos 27(5):685–703CrossRefGoogle Scholar
  26. Ridley M (2004) Evolution, 3rd edn. Blackwell, MaldenGoogle Scholar
  27. Rosenberg A (1982) On the propensity definition of fitness. Philos Sci 49(2):268–273CrossRefGoogle Scholar
  28. Rosenberg A, Bouchard F (2015) Fitness. In: Zalta EN (ed) The stanford encyclopedia of philosophy. https://plato.stanford.edu/entries/fitness/. Accessed 13 Aug 2019
  29. Schoener TW (1974) The compression hypothesis and temporal resource partitioning. Proc Natl Acad Sci USA 71(10):4169–4172CrossRefGoogle Scholar
  30. Schoener TW (1987) A brief history of optimal foraging ecology. In: Kamil AC, Krebs JR, Pulliam HR (eds) A brief history of optimal foraging ecology. Springer, New York, pp 5–67Google Scholar
  31. Sih A (1982) Optimal patch use: variation in selective pressure for efficient foraging. Am Nat 120(5):666–685CrossRefGoogle Scholar
  32. Sober E (2011) A priori causal models of natural selection. Australas J Philos 89:571–589CrossRefGoogle Scholar
  33. Sober E (2013) Trait fitness is not a propensity, but fitness variation is. Stud Hist Philos Sci C Stud Hist Philos Biol Biomed Sci 44:336–341CrossRefGoogle Scholar
  34. Vallejo F (1998) La Tautología Darwinista y Otros Ensayos de Biología. Taurus, MadridGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Centro de Estudios de Filosofía e Historia de la Ciencia (CEFHIC-UNQ-CONICET)Universidad de Buenos Aires (UBA), Universidad Tres de Febrero (UNTREF)BernalArgentina

Personalised recommendations