Asymptotics of Chemotaxis Systems with Fractional Dissipation for Small Data in Critical Sobolev Space

  • Jaewook AhnEmail author
  • Jihoon Lee


A chemotaxis system with Newtonian attraction and fractional dissipation of order \(\alpha \in (0,2)\) is considered in \({ \mathbb{R} }^{N}\). For initial data belonging to \(L^{1}\cap H^{4}\) but small in \(L^{\frac{N}{ \alpha }}\), \(N=2,3\), the temporal decay and the asymptotic behavior of a global classical solution are established. In particular, we derive a precise decay estimate for higher Sobolev norms.


Asymptotics Fractional dissipation Kato–Ponce inequality 

Mathematics Subject Classification (2010)

35R11 92C17 



  1. 1.
    Aceves-Sanchez, P., Schmeiser, C.: Fractional-diffusion-advection limit of a kinetic model. SIAM J. Appl. Math. 48, 2806–2818 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ariel, G., Rabani, A., Benisty, S., Partridge, J.D., Harshey, R.M., Be’er, A.: Swarming bacteria migrate by Lévy walk. Nat. Commun. 6, 8396 (2015) CrossRefGoogle Scholar
  3. 3.
    Bellouquid, A., Nieto, J., Urrutia, L.: About the kinetic description of fractional diffusion equations modeling chemotaxis. Math. Models Methods Appl. Sci. 26, 249–268 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Biler, P., Karch, G.: Blowup of solutions to generalized Keller-Segel model. J. Evol. Equ. 10, 247–262 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Biler, P., Woyczyński, W.A.: Global and exploding solutions for nonlocal quadratic evolution problems. SIAM J. Appl. Math. 59, 845–869 (1998) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Biler, P., Cannone, M., Guerra, I.A., Karch, G.: Global regular and singular solutions for a model of gravitating particles. Math. Ann. 330, 693–708 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Biler, P., Karch, G., Laurençot, P., Nadzieja, T.: The \(8\pi \)-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29, 1563–1583 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Biler, P., Karch, G., Zienkiewicz, J.: Large global-in-time solutions to a nonlocal model of chemotaxis. Adv. Math. 330, 834–975 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 1 (2006) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Blanchet, A., Carrillo, J.A., Masmoudi, N.: Infinite time aggregation for the critical Paltak-Keller-Segel model in \({ \mathbb{R} }^{2}\). Commun. Pure Appl. Math. 61, 1449–1481 (2008) zbMATHCrossRefGoogle Scholar
  11. 11.
    Bonforte, M., Vázquez, J.L.: Quantitative local and global a priori estimates for fractional nonlinear diffusion equations. Adv. Math. 250, 242–284 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Bournaveas, N., Calvez, V.: The one-dimensional Keller-Segel model with fractional diffusion of cells. Nonlinearity 23, 923–935 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Brezis, H., Mironescu, P.: Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J. Evol. Equ. 1, 387–404 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Burczak, J., Granero-Belinchón, R.: Critical Keller-Segel meets Burgers on \(\mathbb{S}^{1}\): large-time smooth solutions. Nonlinearity 29, 3810–3836 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Carrillo, J.A., Ferreira, L.C.F.: The asymptotic behaviour of subcritical dissipative quasi-geostrophic equations. Nonlinearity 21, 1001–1018 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Chae, D., Constantin, P., Córdoba, D., Gancedo, F., Wu, J.: Generalized surface quasi-geostrophic equations with singular velocities. Commun. Pure Appl. Math. 65, 1037–1066 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Escudero, C.: The fractional Keller-Segel model. Nonlinearity 19, 2909–2918 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Estrada-Rodriguez, G., Gimperlein, H., Painter, K.J.: Fractional Patlak–Keller–Segel equations for chemotactic superdiffusion. SIAM J. Appl. Math. 78, 1155–1173 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb., Sect. A, Math. 142, 1237–1262 (2012) zbMATHCrossRefGoogle Scholar
  20. 20.
    Ginibre, J., Velo, G.: The global Cauchy problem for the non linear Klein-Gordon equation. Math. Z. 189, 487–505 (1985) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Grafakos, L., Oh, S.: The Kato–Ponce inequality. Commun. Partial Differ. Equ. 39, 1128–1157 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Grafakos, L., Si, Z.: The Hörmander multiplier theorem for multilinear operators. J. Reine Angew. Math. 668, 133–147 (2012) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Granero-Belinchón, R.: On a drift-diffusion system for semiconductor devices. Ann. Henri Poincaré 17, 3473–3498 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Huang, H., Liu, J.-G.: Well-posedness for the Keller-Segel equation with fractional Laplacian and the theory of propagation of chaos. Kinet. Relat. Models 9, 715–748 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Ju, N.: The maximum principle and the global attractor for the dissipative \(2D\) quasi-geostrophic equations. Commun. Math. Phys. 255, 161–181 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kato, T.: Liapunov functions and monotonicity in the Navier-Stokes equations. In: Functional-Analytic Methods for Partial Differential Equations. Lecture Notes in Mathematics, pp. 53–63. Springer, Berlin (1990) CrossRefGoogle Scholar
  27. 27.
    Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., Cluzel, P.: From molecular noise to behavioral variability in a single bacterium. Nature 428, 574–578 (2004) CrossRefGoogle Scholar
  28. 28.
    Li, D., Rodrigo, J.: Finite-time singularities of an aggregation equation in \({ \mathbb{R} }^{n}\) with fractional dissipation. Commun. Math. Phys. 287, 687–703 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Li, D., Rodrigo, J.L., Zhang, X.: Exploding solutions for a nonlocal quadratic evolution problem. Rev. Mat. Iberoam. 26, 295–332 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Li, L., Liu, J.-G., Wang, L.: Cauchy problems for Keller-Segel type time-space fractional diffusion equation. J. Differ. Equ. 265, 1044–1096 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Luckhaus, S., Sugiyama, Y.: Large time behavior of solutions in super-critical cases to degenerate Keller-Segel systems. ESAIM: Math. Model. Numer. Anal. 40, 597–621 (2006) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Matthäus, F., Jagodič, M., Dobnikar, J.: E. coli superdiffusion and chemotaxis-search strategy, precision, and motility. Biophys. J. 97, 946–957 (2009) CrossRefGoogle Scholar
  33. 33.
    Nagai, T.: Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in \(\mathbb{R}^{2}\). Differ. Integral Equ. 24, 29–68 (2011) zbMATHMathSciNetGoogle Scholar
  34. 34.
    Perthame, B., Sun, W., Tang, M.: The fractional diffusion limit of a kinetic model with biochemical pathway. Z. Angew. Math. Phys. 69, 67 (2018) MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Salem, S., Lafleche, L.: Fractional Keller-Segel equations. In: Séminaire Laurent Schwartz–EDP at Applications, vol. 3, pp. 1–11 (2018) Google Scholar
  36. 36.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970) zbMATHGoogle Scholar
  37. 37.
    Sugiyama, Y., Yamamoto, M., Kato, K.: Local and global solvability and blow up for the drift-diffusion equation with the fractional dissipation in the critical space. J. Differ. Equ. 258, 2983–3010 (2015) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Tu, Y., Grinstein, G.: How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 94, 208101 (2005) CrossRefGoogle Scholar
  39. 39.
    Yamamoto, M., Sugiyama, Y.: Asymptotic behavior of solutions to the drift-diffusion equation with critical dissipation. Ann. Henri Poincaré 17, 1331–1352 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zhao, J.: The optimal temporal decay estimates for the fractional power dissipative equation in negative Besov spaces. J. Math. Phys. 57, 051504 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Zhu, S., Liu, Z., Zhou, L.: Decay estimates for the classical solution of Keller-Segel system with fractional Laplacian in higher dimensions. In: Applicable Analysis, pp. 1–15 (2018) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsChung-Ang UniversitySeoulRepublic of Korea

Personalised recommendations