A Blow-up Criterion for the Density-Dependent Navier–Stokes–Korteweg Equations in Dimension Two

  • Huanyuan LiEmail author


This paper proves a blow-up criterion for the strong solutions with vacuum to the density-dependent Navier–Stokes–Korteweg equations over a bounded smooth domain in \(\mathbb{R}^{2}\), which only in terms of the density.


Navier–Stokes–Korteweg Blow-up criterion Vacuum 



  1. 1.
    Burtea, C., Charve, F.: Lagrangian methods for a general inhomogeneous incompressible Navier–Stokes–Korteweg system with variable capillarity and viscosity coefficients. SIAM J. Math. Anal. 49(5), 3476–3495 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cho, Y., Kim, H.: Unique solvability for the density-dependent Navier–Stokes equations. Nonlinear Anal. 59(4), 465–489 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Desjardins, B.: Regularity results for two-dimensional flows of multiphase viscous fluids. Arch. Ration. Mech. Anal. 137, 135–158 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Danchin, R., Desjardins, B.: Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 18, 97–133 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hattori, H., Li, D.: Solutions for two dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25, 85–98 (1994) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hattori, H., Li, D.: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, 84–97 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Huang, X.D., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system. J. Differ. Equ. 254(2), 511–527 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Huang, X.D., Wang, Y.: Global strong solution with vacuum to the two dimensional density-dependent Navier–Stokes system. SIAM J. Math. Anal. 46(3), 1771–1788 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Huang, X.D., Wang, Y.: Global strong solution of 3D inhomogeneous Navier–Stokes equations with density-dependent viscosity. J. Differ. Equ. 259(4), 1606–1627 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kostin, I., Marion, M., Texier-Picard, R., Volpert Vitaly, A.: Modelling of miscible liquids with the Korteweg stress. Math. Model. Numer. Anal. 37(5), 741–753 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sy, M., Bresch, D., Guillén-González, F., Lemoine, J., Rodríguez-Bellido, M.A.: Local strong solution for the incompressible Korteweg model. C. R. Math. Acad. Sci. Paris 342(3), 169–174 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tan, Z., Wang, Y.J.: Strong solutions for the incompressible fluid models of Korteweg type. Acta Math. Sci. Ser. B Engl. Ed. 30(3), 799–809 (2010) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Wang, T.: Unique solvability for the density-dependent incompressible Navier–Stokes–Korteweg system. J. Math. Anal. Appl. 455(1), 606–618 (2017) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesUniversity of TokyoTokyoJapan

Personalised recommendations