Advertisement

Acta Applicandae Mathematicae

, Volume 164, Issue 1, pp 49–64 | Cite as

Empirical Interpolation Decomposition

  • Asma ToumiEmail author
  • Florian De Vuyst
Article
  • 75 Downloads

Abstract

Many physical problems need a multidimensional description and involve high dimensional spaces. Standard discretization techniques often lead to an excessive computation time. To solve this problem, we develop in this paper an empirical interpolation decomposition (EID) for multivariate functions. This method provides an approximate representation of a given function in separate form. Error estimates of the developed EID are derived and some properties are given.

Keywords

Empirical interpolation decomposition Multivariate functions 

Notes

Acknowledgements

This work was supported by a public grant as part of the Investissement d’avenir project, reference ANR-11 LABX-0056-LMH, LabEx LMH.

References

  1. 1.
    Nouy, A.: Higher-order principal component analysis for the approximation of tensors in tree-based low rank formats. ArXiv preprint (2017) Google Scholar
  2. 2.
    Khoromskij, B.: Tensors-structured numerical methods in scientific computing: survey on recent advances. Chemom. Intell. Lab. Syst. 110(1), 1–19 (2012) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667–672 (2004) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Maday, Y., Nguyen, N.C., Patera, A.T., Pau, S.: A general multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383–404 (2008) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Eftang, J.L., Grepl, M.A., Patera, A.T.: A posteriori error bounds for the empirical interpolation method. C. R. Math. 348, 575–579 (2010) MathSciNetCrossRefGoogle Scholar
  6. 6.
    Maday, Y., Mula, O.: A generalized empirical interpolation method: application of reduced basis techniques to data assimilation. In: Analysis and Numerics of Partial Differential Equations, pp. 221–235. Springer, Berlin (2013) CrossRefGoogle Scholar
  7. 7.
    Chen, P., Quarteroni, A., Rozza, G.: Weighted empirical interpolation method: a priori convergence analysis and applications. ESAIM: M2AN 48, 943–953 (2014) MathSciNetCrossRefGoogle Scholar
  8. 8.
    Casenave, F., Ern, A., Lelièvre, T.: Variants of the Empirical Interpolation Method: symmetric formulation, choice of norms and rectangular extension. ArXiv preprint, arXiv:1508.05330 [math.NA]

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CMLAÉcole Normale Supérieure Paris-Saclay and CNRSParisFrance
  2. 2.LMAC, Sorbonne UniversityUniversity of Technology of CompiégneCompiégneFrance

Personalised recommendations