Acta Applicandae Mathematicae

, Volume 160, Issue 1, pp 81–99 | Cite as

Conditions for Permanence and Ergodicity of Certain SIR Epidemic Models

  • Nguyen Huu Du
  • Nguyen Thanh DieuEmail author
  • Nguyen Ngoc Nhu


In this paper, we study sufficient conditions for the permanence and ergodicity of a stochastic susceptible-infected-recovered (SIR) epidemic model with Beddington-DeAngelis incidence rate in both of non-degenerate and degenerate cases. The conditions obtained in fact are close to the necessary one. We also characterize the support of the invariant probability measure and prove the convergence in total variation norm of the transition probability to the invariant measure. Some of numerical examples are given to illustrate our results.


SIR model Extinction Permanence Stationary distribution Ergodicity 

Mathematics Subject Classification

34C12 60H10 92D25 



We gratefully thank the reviewers and the editor for their positive and helpful suggestions, which help to improve the presentation of the paper. Authors would like to express our gratitude to Nguyen Hai Dang for his valuable comments which helped to improve the paper. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.03-2017.23.


  1. 1.
    Anderson, R.M., May, R.M.: Infectious Diseases in Humans: Dynamics and Control. Oxford University Press, Oxford (1991) Google Scholar
  2. 2.
    Beddington, J.R.: Mutual interference between parasites or predators and its effect on searching efficiency. J. Anim. Ecol. 44, 331–340 (1975) CrossRefGoogle Scholar
  3. 3.
    Bellet, L.R.: Ergodic properties of Markov Process. In: Open Quantum Systems II, pp. 1–39. Springer, Berlin (2006) Google Scholar
  4. 4.
    Capasso, V., Serio, G.: A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42, 41–61 (1978) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, L., Sun, J.: Global stability and optimal control of an SIRS epidemic model on heterogeneous networks. Physica A 410, 196–204 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dang, N.H., Yin, G.: Coexistence and exclusion of stochastic competitive Lotka-Volterra models. J. Differ. Equ. 262, 1192–1225 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dang, N.H., Du, N.H., Yin, G.: Existence of stationary distributions for Kolmogorov systems of competitive type under telegraph noise. J. Differ. Equ. 257, 2078–2101 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    DeAngelis, D.L., Goldstein, R.A., O’Neill, R.V.: A model for trophic interaction. Ecology 56, 881–892 (1975) CrossRefGoogle Scholar
  9. 9.
    Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Classification of asymptotic behavior in a stochastic SIR model. SIAM J. Appl. Dyn. Syst. 15(2), 1062–1084 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dieu, N.T., Nguyen, D.H., Du, N.H., Yin, G.: Protection zones for survival of species in random environment. SIAM J. Appl. Math. 76, 1382–1402 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Du, N.H., Nhu, N.N.: Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises. Appl. Math. Lett. 64, 223–230 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Du, N.H., Dang, N.H., Yin, G.: Conditions for permanence and ergodicity of certain stochastic predator-prey models. J. Appl. Probab. 53(1), 187–202 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hening, A., Nguyen, D.H.: Coexistence and extinction for stochastic Kolmogorov systems. Ann. Appl. Probab. 28, 1893–1942 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hening, A., Nguyen, D.H., Yin, G.: Stochastic population growth in spatially heterogeneous environments: the density-dependent case. J. Math. Biol. 76, 697–754 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hethcote, H.W.: The mathematics of infectious diseases. SIAM Rev. 42, 599–653 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hieu, N.T.; Du, N.H.; Auger, P.; Dang, N.H.: Dynamical behavior of a stochastic SIRS epidemic model. Math. Model. Nat. Phenom. 10, 56–73 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Huang, G., Wanbiao, M., Yasuhiro, T.: Global properties for virus dynamics model with Beddington-DeAngelis functional response. Appl. Math. Lett. 22(11), 1690–1693 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ichihara, K., Kunita, H.: A classification of the second order degenerate elliptic operators and its probabilistic characterization. Z. Wahrscheinlichkeitstheor. Verw. Geb. 39, 81–84 (1977) CrossRefzbMATHGoogle Scholar
  19. 19.
    Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Publishing Co., Amsterdam (1989) zbMATHGoogle Scholar
  20. 20.
    Jurdjevic, V.: Geometric Control Theory. Cambridge Studies in Advanced Mathematics, vol. 52. Cambridge University Press, Cambridge (1997) zbMATHGoogle Scholar
  21. 21.
    Kaddar, A.: On the dynamics of a delayed SIR epidemic model with a modified saturated incidence rate. Electron. J. Differ. Equ. 2009, 133 (2009) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kaddar, A.: Stability analysis in a delayed SIR epidemic model with a saturated incidence rate. Nonlinear Anal. Model. Control 15(3), 299–306 (2010) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Khas’minskii, R.A.: Ergodic properties of recurrent diffusion processes and stabilization of the Cauchy problem for parabolic equations. Theory Probab. Appl. 5, 179–196 (1960) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Khas’minskii, R.A.: Stochastic Stability of Differential Equations. Springer, Berlin (2012) CrossRefGoogle Scholar
  25. 25.
    Kliemann, W.: Recurrence and invariant measures for degenerate diffusions. Ann. Probab. 15(2), 690–707 (1987) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lahrouz, A., Settati, A.: Qualitative study of a nonlinear stochastic SIRS epidemic system. J. Math. Anal. Appl. 32(6), 992–1008 (2014) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Lin, Y., Jiang, D., Jin, M.: Stationary distribution of a stochastic SIR model with saturated incidence rate and its asymptotic. Acta Math. Sci. 35(3), 619–629 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Liu, Z.: Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear Anal., Real World Appl. 14, 1286–1299 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Liu, Q., Chen, Q.: Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence. Physica A 428, 140–153 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Liu, X., Yang, L.: Stability analysis of an SEIQV epidemic model with saturated incidence rate. Nonlinear Anal., Real World Appl. 13, 2671–2679 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lu, Q.: Stability of SIRS system with random perturbations. Physica A 288, 3677–3686 (2009) MathSciNetCrossRefGoogle Scholar
  32. 32.
    Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes. Adv. Appl. Probab. 25, 518–548 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Skorohod, A.V.: Asymptotic Methods in the Theory of Stochastic Differential Equations, vol. 78. Am. Math. Soc., Providence (1989) Google Scholar
  34. 34.
    Stettner, L.: On the existence and uniqueness of invariant measure for continuous time Markov processes. Technical Report LCDS 86-18, Brown University, Providence, RI (1986) Google Scholar
  35. 35.
    Yang, Q., Jiang, D., Shi, N., Ji, C.: The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence. J. Math. Anal. Appl. 388(1), 248–271 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yorke, J.A., London, W.P.: Recurrent outbreaks of measles, chickenpox and mumps II. Am. J. Epidemiol. 98, 469–482 (1973) CrossRefGoogle Scholar
  37. 37.
    Zhang, T., Zhidong, T.: Pulse vaccination delayed SEIRS epidemic model with saturation incidence. Appl. Math. Model. 32(7), 1403–1416 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhao, Y., Jiang, D.: The threshold of a stochastic SIRS epidemic model with saturated incidence. Appl. Math. Lett. 34, 90–93 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Zhou, Y., Zhang, W., Yuan, S., Hu, H.: Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate. Electron. J. Differ. Equ. 2014, 42 (2014) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Nguyen Huu Du
    • 1
  • Nguyen Thanh Dieu
    • 2
    Email author
  • Nguyen Ngoc Nhu
    • 1
  1. 1.Department of Mathematics, Mechanics and InformaticsHanoi National UniversityHanoiVietnam
  2. 2.Department of MathematicsVinh UniversityVinhVietnam

Personalised recommendations