Acta Applicandae Mathematicae

, Volume 159, Issue 1, pp 169–224 | Cite as

Monopoles, Dipoles, and Harmonic Functions on Bratteli Diagrams

  • Sergey BezuglyiEmail author
  • Palle E. T. Jorgensen


In our study of electrical networks we develop two themes: finding explicit formulas for special classes of functions defined on the vertices of a transient network, namely monopoles, dipoles, and harmonic functions. Secondly, our interest is focused on the properties of electrical networks supported on Bratteli diagrams. We show that the structure of Bratteli diagrams allows one to describe algorithmically harmonic functions as well as monopoles and dipoles. We also discuss some special classes of Bratteli diagrams (stationary, Pascal, trees), and we give conditions under which the harmonic functions defined on these diagrams have finite energy.


Bratteli diagram Laplace operator Random walk Electrical network Monopole Dipole Harmonic function Semibranching function system Pascal graph Green’s function Symmetry 

Mathematics Subject Classification

37B10 37L30 47L50 60J45 


  1. 1.
    Daniel, A., Jorgensen, P.E.T.: Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 33(7–9), 708–735 (2012) MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alpay, D., Jorgensen, P., Levanony, D.: A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261(2), 507–541 (2011) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Alpay, D., Jorgensen, P., Seager, R., Volok, D.: On discrete analytic functions: products, rational functions and reproducing kernels. J. Appl. Math. Comput. 41(1–2), 393–426 (2013) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ancona, A., Lyons, R., Peres, Y.: Crossing estimates and convergence of Dirichlet functions along random walk and diffusion paths. Ann. Probab. 27(2), 970–989 (1999) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Anantharaman, C., Renault, J.: Amenable groupoids. In: Groupoids in Analysis, Geometry, and Physics, Boulder, CO, 1999. Contemp. Math., vol. 282, pp. 35–46. Am. Math. Soc., Providence (2001) Google Scholar
  6. 6.
    Barnsley, M.F.: Superfractals. Cambridge University Press, Cambridge (2006) zbMATHGoogle Scholar
  7. 7.
    Bezuglyi, S., Dooley, A.H., Kwiatkowski, J.: Topologies on the group of Borel automorphisms of a standard Borel space. Topol. Methods Nonlinear Anal. 27(2), 333–385 (2006) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bezuglyi, S., Handelman, D.: Measures on Cantor sets: the good, the ugly, the bad. Transl. Am. Math. Soc. 366(12), 6247–6311 (2014) MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bezuglyi, S., Jorgensen, P.E.T.: Representations of Cuntz-Krieger relations, dynamics on Bratteli diagrams, and path-space measures. In: Trends in Harmonic Analysis and Its Applications. Contemp. Math., vol. 650, pp. 57–88. Am. Math. Soc., Providence (2015) Google Scholar
  10. 10.
    Bratteli, O., Jorgensen, P.E.T., Kim, K.H., Roush, F.: Non-stationarity of isomorphism between AF algebras defined by stationary Bratteli diagrams. Ergod. Theory Dyn. Syst. 20(6), 1639–1656 (2000) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Bratteli, O., Jorgensen, P.E.T., Kim, K.H., Roush, F.: Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups. Ergod. Theory Dyn. Syst. 21(6), 1625–1655 (2001) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Bratteli, O., Jorgensen, P.E.T., Kim, K.H., Roush, F.: Computation of isomorphism invariants for stationary dimension groups. Ergod. Theory Dyn. Syst. 22(1), 99–127 (2002) MathSciNetzbMATHGoogle Scholar
  13. 13.
    Bratteli, O., Jorgensen, P.E.T., Ostrovskyĭ, V.: Representation theory and numerical AF-invariants. The representations and centralizers of certain states on \(\mathcal{O}_{d}\). Mem. Am. Math. Soc. 168, 797 (2004), xviii+178 pp. Google Scholar
  14. 14.
    Bezuglyi, S., Karpel, O.: Bratteli diagrams: structure, measures, dynamics. Preprint (2015) Google Scholar
  15. 15.
    Bezuglyi, S., Kwiatkowski, J., Medynets, K., Solomyak, B.: Invariant measures on stationary Bratteli diagrams. Ergod. Theory Dyn. Syst. 30(4), 973–1007 (2010) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Bott, R.: Electrical Network Theory. ProQuest LLC, Ann Arbor (1949). Thesis (Ph.D.), Carnegie Mellon University Google Scholar
  17. 17.
    Bratteli, O.: Inductive limits of finite dimensional \(C^{\ast}\)-algebras. Transl. Am. Math. Soc. 171, 195–234 (1972) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cartier, P.: Géométrie et analyse sur les arbres. In: Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 407. Lecture Notes in Math., vol. 317, pp. 123–140. Springer, Berlin (1973) Google Scholar
  19. 19.
    Cho, I.: Algebras Graphs and Their Applications. CRC Press, Boca Raton (2014). Edited by Palle E.T. Jorgensen Google Scholar
  20. 20.
    Chung, S.-Y.: Identification of resistors in electrical networks. J. Korean Math. Soc. 47(6), 1223–1238 (2010) MathSciNetzbMATHGoogle Scholar
  21. 21.
    Connes, A.: Gravity coupled with matter and the foundation of non-commutative geometry. Commun. Math. Phys. 182(1), 155–176 (1996) MathSciNetzbMATHGoogle Scholar
  22. 22.
    Persi, D.: A generalization of spectral analysis with application to ranked data. Ann. Stat. 17(3), 949–979 (1989) MathSciNetzbMATHGoogle Scholar
  23. 23.
    Diekman, C.O.: Modeling and Analysis of Electrical Network Activity in Neuronal Systems. ProQuest LLC, Ann Arbor (2010). Thesis (Ph.D.), University of Michigan Google Scholar
  24. 24.
    Dutkay, D.E., Jorgensen, P.E.T.: Spectral theory for discrete Laplacians. Complex Anal. Oper. Theory 4(1), 1–38 (2010) MathSciNetzbMATHGoogle Scholar
  25. 25.
    Dutkay, D.E., Jorgensen, P.E.T.: Affine fractals as boundaries and their harmonic analysis. Proc. Am. Math. Soc. 139(9), 3291–3305 (2011) MathSciNetzbMATHGoogle Scholar
  26. 26.
    Dutkay, D.E., Jorgensen, P.E.T.: Spectral duality for unbounded operators. J. Oper. Theory 65(2), 325–353 (2011) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Dutkay, D.E., Jorgensen, P.E.T.: Spectral measures and Cuntz algebras. Math. Comput. 81(280), 2275–2301 (2012) MathSciNetzbMATHGoogle Scholar
  28. 28.
    D’Andrea, J., Merrill, K.D., Packer, J.: Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space. In: Frames and Operator Theory in Analysis and Signal Processing. Contemp. Math., vol. 451, pp. 69–88. Am. Math. Soc., Providence (2008) Google Scholar
  29. 29.
    Doob, J.L.: Boundary properties for functions with finite Dirichlet integrals. Ann. Inst. Fourier (Grenoble) 12, 573–621 (1962) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Du, J.: On Non-Zero-Sum Stochastic Game Problems with Stopping Times. ProQuest LLC, Ann Arbor (2012). Thesis (Ph.D.), University of Southern California Google Scholar
  31. 31.
    Durand, F.: Combinatorics on Bratteli diagrams and dynamical systems. In: Combinatorics, Automata and Number Theory. Encyclopedia Math. Appl., vol. 135, pp. 324–372. Cambridge University Press, Cambridge (2010) Google Scholar
  32. 32.
    Exel, R., Renault, J.: Semigroups of local homeomorphisms and interaction groups. Ergod. Theory Dyn. Syst. 27(6), 1737–1771 (2007) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Farsi, C., Gillaspy, E., Kang, S., Packer, J.A.: Separable representations, KMS states, and wavelets for higher-rank graphs. J. Math. Anal. Appl. 434(1), 241–270 (2016) MathSciNetzbMATHGoogle Scholar
  34. 34.
    Furstenberg, H., Katznelson, Y., Weiss, B.: Ergodic theory and configurations in sets of positive density. In: Mathematics of Ramsey Theory. Algorithms Combin., vol. 5, pp. 184–198. Springer, Berlin (1990) Google Scholar
  35. 35.
    Furstenberg, H., Weiss, B.: Markov processes and Ramsey theory for trees. Comb. Probab. Comput. 12(5–6), 547–563 (2003). Special issue on Ramsey theory MathSciNetzbMATHGoogle Scholar
  36. 36.
    Georgakopoulos, A.: Uniqueness of electrical currents in a network of finite total resistance. J. Lond. Math. Soc. (2) 82(1), 256–272 (2010) MathSciNetzbMATHGoogle Scholar
  37. 37.
    Georgakopoulos, A., Haeseler, S., Keller, M., Lenz, D., Wojciechowski, R.K.: Graphs of finite measure. J. Math. Pures Appl. (9) 103(5), 1093–1131 (2015) MathSciNetzbMATHGoogle Scholar
  38. 38.
    Grimmett, G.R., Holroyd, A.E., Peres, Y.: Extendable self-avoiding walks. Ann. Inst. Henri Poincaré D 1(1), 61–75 (2014) MathSciNetzbMATHGoogle Scholar
  39. 39.
    Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and \(C^{*}\)-crossed products. J. Reine Angew. Math. 469, 51–111 (1995) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Helfgott, H.A.: Growth in groups: ideas and perspectives. Bull. Am. Math. Soc. (N.S.) 52(3), 357–413 (2015) MathSciNetzbMATHGoogle Scholar
  41. 41.
    Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3(6), 827–864 (1992) MathSciNetzbMATHGoogle Scholar
  42. 42.
    Ionescu, M., Muhly, P.S.: Groupoid methods in wavelet analysis. In: Group Representations, Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey. Contemp. Math., vol. 449, pp. 193–208. Am. Math. Soc., Providence (2008) Google Scholar
  43. 43.
    Ionescu, M., Muhly, P.S., Vega, V.: Markov operators and \(C^{*}\)-algebras. Houst. J. Math. 38(3), 775–798 (2012) MathSciNetzbMATHGoogle Scholar
  44. 44.
    Jorgensen, P.E.T., Kornelson, K.A., Shuman, K.L.: An operator-fractal. Numer. Funct. Anal. Optim. 33(7–9), 1070–1094 (2012) MathSciNetzbMATHGoogle Scholar
  45. 45.
    Jorgensen, P.E.T.: Analysis and Probability: Wavelets, Signals, Fractals. Graduate Texts in Mathematics, vol. 234. Springer, New York (2006) zbMATHGoogle Scholar
  46. 46.
    Jorgensen, P.E.T., Pearse, E.P.J.: A Hilbert space approach to effective resistance metric. Complex Anal. Oper. Theory 4(4), 975–1013 (2010) MathSciNetzbMATHGoogle Scholar
  47. 47.
    Jorgensen, P.E.T., Paolucci, A.M.: States on the Cuntz algebras and \(p\)-adic random walks. J. Aust. Math. Soc. 90(2), 197–211 (2011) MathSciNetzbMATHGoogle Scholar
  48. 48.
    Jorgensen, P.E.T., Pearse, E.P.J.: Resistance boundaries of infinite networks. In: Random Walks, Boundaries and Spectra. Progr. Probab., vol. 64, pp. 111–142. Springer Basel AG, Basel (2011) Google Scholar
  49. 49.
    Jorgensen, P.E.T., Paolucci, A.M.: \(q\)-Frames and Bessel functions. Numer. Funct. Anal. Optim. 33(7–9), 1063–1069 (2012) MathSciNetzbMATHGoogle Scholar
  50. 50.
    Jorgensen, P.E.T., Pearse, E.P.J.: A discrete Gauss-Green identity for unbounded Laplace operators, and the transience of random walks. Isr. J. Math. 196(1), 113–160 (2013) MathSciNetzbMATHGoogle Scholar
  51. 51.
    Jorgensen, P.E.T., Pearse, E.P.J.: Spectral comparisons between networks with different conductance functions. J. Oper. Theory 72(1), 71–86 (2014) MathSciNetzbMATHGoogle Scholar
  52. 52.
    Jorgensen, P., Tian, F.: Frames and factorization of graph Laplacians. Opusc. Math. 35(3), 293–332 (2015) MathSciNetzbMATHGoogle Scholar
  53. 53.
    Jorgensen, P., Tian, F.: Infinite networks and variation of conductance functions in discrete Laplacians. J. Math. Phys. 56(4), 043506 (2015). 27 MathSciNetzbMATHGoogle Scholar
  54. 54.
    Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001) zbMATHGoogle Scholar
  55. 55.
    Keller, M., Lenz, D., Schmidt, M., Wirth, M.: Diffusion determines the recurrent graph. Adv. Math. 269, 364–398 (2015) MathSciNetzbMATHGoogle Scholar
  56. 56.
    Keller, M., Lenz, D., Warzel, S.: On the spectral theory of trees with finite cone type. Isr. J. Math. 194(1), 107–135 (2013) MathSciNetzbMATHGoogle Scholar
  57. 57.
    Katsura, T., Muhly, P.S., Sims, A., Tomforde, M.: Graph algebras, Exel-Laca algebras, and ultragraph algebras coincide up to Morita equivalence. J. Reine Angew. Math. 640, 135–165 (2010) MathSciNetzbMATHGoogle Scholar
  58. 58.
    Lyons, R., Peres, Y.: Probability on trees and networks.
  59. 59.
    Latrémolière, F., Packer, J.A.: Noncommutative solenoids and their projective modules. In: Commutative and Noncommutative Harmonic Analysis and Applications. Contemp. Math., vol. 603, pp. 35–53. Am. Math. Soc., Providence (2013) Google Scholar
  60. 60.
    Marrero, A.E., Muhly, P.S.: Groupoid and inverse semigroup presentations of ultragraph \(C^{*}\)-algebras. Semigroup Forum 77(3), 399–422 (2008) MathSciNetzbMATHGoogle Scholar
  61. 61.
    Mokobodzki, G., Pinchon, D. (eds.): Théorie du potentiel. Lecture Notes in Mathematics, vol. 1096. Springer, Berlin (1984) zbMATHGoogle Scholar
  62. 62.
    Marcolli, M., Paolucci, A.M.: Cuntz-Krieger algebras and wavelets on fractals. Complex Anal. Oper. Theory 5(1), 41–81 (2011) MathSciNetzbMATHGoogle Scholar
  63. 63.
    Nash-Williams, C.St.J.A.: Random walk and electric currents in networks. Proc. Camb. Philos. Soc. 55, 181–194 (1959) MathSciNetzbMATHGoogle Scholar
  64. 64.
    Petit, C.: Harmonic functions on hyperbolic graphs. Proc. Am. Math. Soc. 140(1), 235–248 (2012) MathSciNetzbMATHGoogle Scholar
  65. 65.
    Powers, R.T.: Resistance inequalities for the isotropic Heisenberg ferromagnet. J. Math. Phys. 17(10), 1910–1918 (1976) MathSciNetGoogle Scholar
  66. 66.
    Peres, Y., Sousi, P.: Brownian motion with variable drift: 0-1 laws, hitting probabilities and Hausdorff dimension. Math. Proc. Camb. Philos. Soc. 153(2), 215–234 (2012) MathSciNetzbMATHGoogle Scholar
  67. 67.
    Qian, D., Zhang, X.: Potential distribution on random electrical networks. Acta Math. Appl. Sin. Engl. Ser. 27(3), 549–559 (2011) MathSciNetzbMATHGoogle Scholar
  68. 68.
    Renault, J.: AF equivalence relations and their cocycles. In: Operator Algebras and Mathematical Physics, Constanţa, 2001, pp. 365–377. Theta, Bucharest (2003) Google Scholar
  69. 69.
    Shilov, G.E., Gurevich, B.L.: Integral, Measure and Derivative: A Unified Approach, english edn. Dover, New York (1977). Translated from the Russian and edited by Richard A. Silverman, Dover Books on Advanced Mathematics zbMATHGoogle Scholar
  70. 70.
    Soardi, P.M.: Potential Theory on Infinite Networks. Lecture Notes in Mathematics, vol. 1590. Springer, Berlin (1994) zbMATHGoogle Scholar
  71. 71.
    Sokol, A.: An elementary proof that the first hitting time of an open set by a jump process is a stopping time. In: Séminaire de Probabilités XLV. Lecture Notes in Math., vol. 2078, pp. 301–304. Springer, Cham (2013) Google Scholar
  72. 72.
    Smale, S., Zhou, D.-X.: Geometry on probability spaces. Constr. Approx. 30(3), 311–323 (2009) MathSciNetzbMATHGoogle Scholar
  73. 73.
    Smale, S., Zhou, D.-X.: Online learning with Markov sampling. Anal. Appl. 7(1), 87–113 (2009) MathSciNetzbMATHGoogle Scholar
  74. 74.
    Tsuchiya, T., Ohtsuki, T., Ishizaki, Y., Watanabe, H., Kajitani, Y., Kishi, G.: Topological degrees of freedom of electrical networks. In: Proc. Fifth Annual Allerton Conf. on Circuit and System Theory, Monticello, IL, 1967, pp. 644–653. Univ. of Illinois, Urbana (1967) Google Scholar
  75. 75.
    Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  76. 76.
    Woess, W.: Denumerable Markov Chains. Generating Functions, Boundary Theory, Random Walks on Trees. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2009) zbMATHGoogle Scholar
  77. 77.
    Yamasaki, M.: Discrete potentials on an infinite network. Mem. Fac. Sci. Shimane Univ. 13, 31–44 (1979) MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of MathematicsInstitute for Low Temperature PhysicsKharkivUkraine
  2. 2.Department of MathematicsUniversity of IowaIowa CityUSA
  3. 3.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations