Acta Applicandae Mathematicae

, Volume 162, Issue 1, pp 47–61 | Cite as

Quasiperiodic Dynamics and Magnetoresistance in Normal Metals

  • Roberto De LeoEmail author
  • Andrei Y. Maltsev


In this article we give a brief survey on the physics and mathematics of the phenomenon of conductivity in metals under a strong magnetic field.


Magnetoresistance Quasiperiodic functions Poisson brackets Stereographic maps 



The authors are very grateful to S.P. Novikov for introducing the subject and for his constant interest and support and also thank I.A. Dynnikov for many fruitful discussions on the subject over the years. The numerical data in this article was produced on the High-Performance Computational Clusters of the National Institute of Nuclear Physics (INFN) at Cagliari (Italy) and of the College of Arts and Sciences (CoAS) and of the Center for Computational Biology and Bioinformatics (CCBB) at Howard University (Washington, DC). This material is based upon work supported by the National Science Foundation under Grant No. DMS-1832126 and the project “Dynamics of complex systems” (L.D. Landau Institute for Theoretical Physics).


  1. 1.
    Abrikosov, A.: Fundamentals of the Theory of Metals. North Holland, Amsterdam (1988) Google Scholar
  2. 2.
    Alexeevskii, N., Gaidukov, Y.: Concerning the Fermi surface of Tin. J. Exp. Theor. Phys. 14, 770 (1962) Google Scholar
  3. 3.
    Avila, A., Hubert, P., Skripchenko, A.: Diffusion for chaotic plane sections of 3-periodic surfaces. Invent. Math. 206(1), 109–146 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Avila, A., Hubert, P., Skripchenko, A.: On the Hausdorff dimension of the Rauzy gasket. Bull. Soc. Math. Fr. 144(3), 539–568 (2016) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bian, Q.: Magnetoresistance and Fermi surface of copper single crystals containing dislocations. Ph.D. thesis (2010).
  6. 6.
    Bian, Q., Niewczas, M.: Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals. Philos. Mag. 96(17), 1832–1860 (2016) CrossRefGoogle Scholar
  7. 7.
    Bohl, P.: Ueber die darstellung von Functionen einer variabeln durch trigonometrische reihen mit mehreren einer variabeln Proportionalen argumenten. Druck von C. Mattiesen (1893) Google Scholar
  8. 8.
    Bohr, H.: Zur theorie der fastperiodischen funktionen. Acta Math. 47(3), 237–281 (1926) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    De Leo, R.: Numerical analysis of the Novikov problem of a normal metal in a strong magnetic field. SIAM J. Appl. Dyn. Syst. 2(4), 517–545 (2003). MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    De Leo, R.: Characterization of the set of “ergodic directions” in the Novikov problem of quasi-electrons orbits in normal metals. Russ. Math. Surv. 58(5), 1042–1043 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    De Leo, R.: Topological effects in the magnetoresistance of Au and Ag. Phys. Lett. A 332, 469–474 (2004) zbMATHCrossRefGoogle Scholar
  12. 12.
    De Leo, R.: First-principles generation of Stereographic Maps for high-field magnetoresistance in normal metals: an application to Au and Ag. Physica B 362, 62–75 (2005) CrossRefGoogle Scholar
  13. 13.
    De Leo, R.: NTC: GNU NTC library (1999–2018) Google Scholar
  14. 14.
    De Leo, R., Dynnikov, I.: Geometry of plane sections of the infinite regular skew polyhedron \(\{4,6|4\}\). Geom. Dedic. 138(1), 51–67 (2009) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dynnikov, I.: Surfaces in 3-torus: geometry of plane sections. In: Proc. of ECM2, BuDA (1996) Google Scholar
  16. 16.
    Dynnikov, I.: Semiclassical motion of the electron. A proof of the Novikov conjecture in general position and counterexamples. In: AMS Transl., vol. 179, pp. 45–73 (1997) Google Scholar
  17. 17.
    Dynnikov, I.: The geometry of stability regions in Novikov’s problem on the semiclassical motion of an electron. Russ. Math. Surv. 54(1), 21–60 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dynnikov, I., Novikov, S.: Topology of quasiperiodic functions on the plane. Russ. Math. Surv. 60(1), 1–26 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dynnikov, I., Skripchenko, A.: Symmetric band complexes of thin type and chaotic sections which are not quite chaotic. Trans. Mosc. Math. Soc. 76, 251–269 (2015) MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Esclangon, E.: Les fonctions quasi-périodiques. Gauthier-Villars, Paris (1904) zbMATHGoogle Scholar
  21. 21.
    Gaidukov, Y.: Topology of the Fermi surface for Gold. J. Exp. Theor. Phys. 10(5), 913 (1960) Google Scholar
  22. 22.
    Guillemin, V., Sternberg, S.: Symplectic Techniques in Physics. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
  23. 23.
    Kaganov, A., Peschanskii, V.: Phys. Rep. 372, 445–487 (2002) CrossRefGoogle Scholar
  24. 24.
    Lifshitz, I., Kaganov, A.: Sov. Phys. 2(6), 831–835 (1960) CrossRefGoogle Scholar
  25. 25.
    Lifshitz, I., Kaganov, A.: Sov. Phys. 5(6), 878–907 (1963) CrossRefGoogle Scholar
  26. 26.
    Lifshitz, I., Kaganov, A.: Sov. Phys. 8(6), 805–851 (1966) CrossRefGoogle Scholar
  27. 27.
    Lifshitz, I., Peschanskii, V.: Galvanomagnetic characteristics of metals with open Fermi surfaces I. J. Exp. Theor. Phys. 8, 875 (1959) Google Scholar
  28. 28.
    Lifshitz, I., Peschanskii, V.: Galvanomagnetic characteristics of metals with open Fermi surfaces II. J. Exp. Theor. Phys. 11, 137 (1960) Google Scholar
  29. 29.
    Lifshitz, I., Azbel, M., Kaganov, M.: On the theory of galvanomagnetic effects in metals. J. Exp. Theor. Phys. 3, 143 (1956) Google Scholar
  30. 30.
    Lifshitz, I., Azbel, M., Kaganov, M.: The theory of galvanomagnetic effects in metals. J. Exp. Theor. Phys. 4(1), 41 (1957) zbMATHGoogle Scholar
  31. 31.
    Lifshitz, I., Azbel, M., Kaganov, M.: Electron Theory of Metals. Consultants Bureau, New York (1973) Google Scholar
  32. 32.
    Maltsev, A.: Anomalous behavior of the electrical conductivity tensor in strong magnetic fields. J. Exp. Theor. Phys. 85(5), 934–942 (1997) CrossRefGoogle Scholar
  33. 33.
    Maltsev, A.: On the analytical properties of the magneto-conductivity in the case of presence of stable open electron trajectories on a complex Fermi surface. J. Exp. Theor. Phys. 124(5), 805–831 (2017) CrossRefGoogle Scholar
  34. 34.
    Maltsev, A.: Oscillation phenomena and experimental determination of exact mathematical stability zones for magneto-conductivity in metals having complicated Fermi surfaces. J. Exp. Theor. Phys. 125(5), 896–905 (2017) CrossRefGoogle Scholar
  35. 35.
    Maltsev, A.: The second boundaries of stability zones and the angular diagrams of conductivity for metals having complicated Fermi surfaces (2018). arXiv:1804.10762
  36. 36.
    Maltsev, A., Novikov, S.: Quasiperiodic functions and dynamical systems in quantum solid state physics. Bull. Braz. Math. Soc. 34(1), 171–210 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Maltsev, A., Novikov, S.: Dynamical systems, topology, and conductivity in normal metals. J. Stat. Phys. 115(1–2), 31–46 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Maltsev, A., Novikov, S.: The theory of closed 1-forms, levels of quasiperiodic functions and transport phenomena in electron systems (2018). arXiv:1805.05210
  39. 39.
    Novikov, S.: Hamiltonian formalism and a multivalued analog of Morse theory. Russ. Math. Surv. 37(5), 3–49 (1982) CrossRefGoogle Scholar
  40. 40.
    Novikov, S.: Quasiperiodic structures in topology. In: Topological Methods in Modern Mathematics, pp. 223–233. Stony Brook, New York (1991). Google Scholar
  41. 41.
    Novikov, S.: The semiclassical electron in a magnetic field and lattice. Some problems of low dimensional “periodic” topology. Geom. Funct. Anal. 5(2), 434–444 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Novikov, S.: I. Classical and modern topology. II. Topological phenomena in real world physics. In: Modern Birkhauser Classics, vol. GAFA 2000, pp. 406–425 (2000). arXiv:math-ph/0004012 Google Scholar
  43. 43.
    Novikov, S., Mal’tsev, A.: Topological quantum characteristics observed in the investigation of the conductivity in normal metals. JETP Lett. 63(10), 855–860 (1996) CrossRefGoogle Scholar
  44. 44.
    Novikov, S., Maltsev, A.: Topological phenomena in normal metals. Phys. Usp. 41(3), 231–239 (1998) CrossRefGoogle Scholar
  45. 45.
    Novikov, S., Maltsev, A.: Dynamical systems, topology and conductivity in normal metals. J. Stat. Phys. 115, 31–46 (2003). arXiv:Cond-mat/0312708 MathSciNetzbMATHGoogle Scholar
  46. 46.
    Pippard, A.: An experimental determination of the Fermi surface in Copper. Philos. Trans. R. Soc. A 250, 325 (1957) CrossRefGoogle Scholar
  47. 47.
    Skripchenko, A.: On connectedness of chaotic sections of some 3-periodic surfaces. Ann. Glob. Anal. Geom. 43(3), 253–271 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Zorich, A.: A problem of Novikov on the semiclassical motion of electrons in a uniform almost rational magnetic field. Usp. Mat. Nauk 39(5), 235–236 (1984) Google Scholar
  49. 49.
    Zorich, A.: Flat surfaces. In: Frontiers in Number Theory, Physics, and Geometry, vol. I, pp. 439–585 (2006) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of MathematicsHoward UniversityWashingtonUSA
  2. 2.Landau Institute for Theoretical PhysicsChernogolovkaRussia

Personalised recommendations