Acta Applicandae Mathematicae

, Volume 162, Issue 1, pp 33–45 | Cite as

A Solution-Generating Method in Einstein-Scalar Gravity

  • Mariano CadoniEmail author
  • Edgardo Franzin
  • Federico Masella
  • Matteo Tuveri


We present a method to generate static, spherically symmetric, solutions of Einstein gravity in \(d+2\) dimensions minimally coupled to a real scalar field with a self-interacting potential. The solutions can be fully parametrised by a single function, whose behaviour encodes all the information about the local and global behaviour of the spacetime. We give several explicit applications of our solution-generating method that describe black holes, naked singularities and solitonic configurations.


Einstein-scalar gravity Exact solutions Black holes 



EF is partially supported by the Spanish MINECO under projects FPA2016-76005-C2-C-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia “María de Maeztu”), and by AGAUR grant 2017-SGR-754.


  1. 1.
    Fisher, I.Z.: Scalar mesostatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz. 18, 636–640 (1948) Google Scholar
  2. 2.
    Buchdahl, H.A.: Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev. 115, 1325–1328 (1959) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Janis, A.I., Newman, E.T., Winicour, J.: Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878–880 (1968) CrossRefGoogle Scholar
  4. 4.
    Wyman, M.: Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839–841 (1981) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bechmann, O., Lechtenfeld, O.: Exact black-hole solution with self-interacting scalar field. Class. Quantum Gravity 12, 1473–1482 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dennhardt, H., Lechtenfeld, O.: Scalar deformations of Schwarzschild holes and their stability. Int. J. Mod. Phys. A 13, 741–764 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bronnikov, K.A., Shikin, G.N.: Spherically symmetric scalar vacuum: no-go theorems, black holes and solitons. Gravit. Cosmol. 8, 107–116 (2002) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bronnikov, K.A., Fabris, J.C.: Regular phantom black holes. Phys. Rev. Lett. 96, 251101 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bronnikov, K.A., Melnikov, V.N., Dehnen, H.: Regular black holes and black universes. Gen. Relativ. Gravit. 39, 973–987 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bronnikov, K.A., Chernakova, M.S.: Charged black holes and unusual wormholes in scalar-tensor gravity. Gravit. Cosmol. 13, 51–55 (2007) MathSciNetzbMATHGoogle Scholar
  11. 11.
    Nikonov, V.V., Tchemarina, J.V., Tsirulev, A.N.: A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations. Class. Quantum Gravity 25, 138001 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Azreg-Aïnou, M.: Selection criteria for two-parameter solutions to scalar-tensor gravity. Gen. Relativ. Gravit. 42, 1427–1456 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Bekenstein, J.D.: Nonexistence of baryon number for static black holes. Phys. Rev. D 5, 1239–1246 (1972) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bekenstein, J.D.: Novel ‘no scalar hair’ theorem for black holes. Phys. Rev. D 51, R6608–R6611 (1995) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Mayo, A.E., Bekenstein, J.D.: No hair for spherical black holes: charged and nonminimally coupled scalar field with selfinteraction. Phys. Rev. D 54, 5059–5069 (1996) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sudarsky, D.: A Simple proof of a no-hair theorem in Einstein-Higgs theory. Class. Quantum Gravity 12, 579–584 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Torii, T., Maeda, K., Narita, M.: Scalar hair on the black hole in asymptotically anti-de Sitter space-time. Phys. Rev. D 64, 044007 (2001) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hertog, T.: Towards a novel no-hair theorem for black holes. Phys. Rev. D 74, 084008 (2006) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014) CrossRefGoogle Scholar
  20. 20.
    Herdeiro, C.A.R., Radu, E.: Asymptotically flat black holes with scalar hair: a review. In: Herdeiro, C.A.R., Cardoso, V., Lemos, J.P.S., Mena, F.C. (eds.) Proceedings of the 7th Black Holes Workshop, Aveiro, Portugal, Dec. 18–19, 2014. Int. J. Mod. Phys. D, vol. 24, p. 1542014 (2014) Google Scholar
  21. 21.
    Cadoni, M., Mignemi, S., Serra, M.: Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Phys. Rev. D 84, 084046 (2011) CrossRefGoogle Scholar
  22. 22.
    Cadoni, M., Serra, M., Mignemi, S.: Black brane solutions and their solitonic extremal limit in Einstein-scalar gravity. Phys. Rev. D 85, 086001 (2012) CrossRefGoogle Scholar
  23. 23.
    Cadoni, M., Mignemi, S.: Phase transition and hyperscaling violation for scalar black branes. J. High Energy Phys. 06, 056 (2012) CrossRefzbMATHGoogle Scholar
  24. 24.
    Cadoni, M., Serra, M.: Hyperscaling violation for scalar black branes in arbitrary dimensions. J. High Energy Phys. 11, 136 (2012) CrossRefGoogle Scholar
  25. 25.
    Cadoni, M., Franzin, E.: Asymptotically flat black holes sourced by a massless scalar field. Phys. Rev. D 91, 104011 (2015) MathSciNetCrossRefGoogle Scholar
  26. 26.
    Cadoni, M., Franzin, E., Serra, M.: Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes. J. High Energy Phys. 01, 125 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Solovyev, D.A., Tsirulev, A.N.: General properties and exact models of static self-gravitating scalar field configurations. Class. Quantum Gravity 29, 055013 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Franzin, E., Cadoni, M., Tuveri, M.: Sine-Gordon solitonic scalar stars and black holes. Phys. Rev. D 97, 124018 (2018) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Gaeta, G., Reiss, C., Peyrard, M., Dauxois, T.: Simple models of non-linear DNA dynamics. Riv. Nuovo Cimento 17, 1–48 (1994) CrossRefGoogle Scholar
  30. 30.
    Barone, A., Paternò, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982) CrossRefGoogle Scholar
  31. 31.
    Cuevas-Maraver, J., Kevrekidis, P., Williams, F. (eds.): The Sine-Gordon Model and Its Applications. Springer, Heidelberg (2014) zbMATHGoogle Scholar
  32. 32.
    Gegenberg, J., Kunstatter, G.: Solitons and black holes. Phys. Lett. B 413, 274–280 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Cadoni, M.: 2-D extremal black holes as solitons. Phys. Rev. D 58, 104001 (1998) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bronnikov, K.A.: Spherically symmetric false vacuum: no-go theorems and global structure. Phys. Rev. D 64, 064013 (2001) CrossRefGoogle Scholar
  35. 35.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972) Google Scholar
  36. 36.
    Carminati, J., McLenaghan, R.G.: Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32, 3135 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Anabalón, A., Oliva, J.: Exact hairy black holes and their modification to the universal law of gravitation. Phys. Rev. D 86, 107501 (2012) CrossRefGoogle Scholar
  38. 38.
    Anabalón, A., Deruelle, N.: On the mechanical stability of asymptotically flat black holes with minimally coupled scalar hair. Phys. Rev. D 88, 064011 (2013) CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Dipartimento di Fisica, Università di Cagliari & INFN, Sezione di CagliariCittadella UniversitariaMonserratoItaly
  2. 2.Departament de Física Quàntica i Astrofísica, Institut de Ciènces del CosmosUniversitat de BarcelonaBarcelonaSpain
  3. 3.Dipartimento di Fisica, Università di CagliariCittadella UniversitariaMonserratoItaly

Personalised recommendations