Extended Relativistic Toda Lattice, L-Orthogonal Polynomials and Associated Lax Pair

  • Cleonice F. BraccialiEmail author
  • Jairo S. Silva
  • A. Sri Ranga


When a measure \(\varPsi(x)\) on the real line is subjected to the modification \(d\varPsi^{(t)}(x) = e^{-tx} d \varPsi(x)\), then the coefficients of the recurrence relation of the orthogonal polynomials in \(x\) with respect to the measure \(\varPsi^{(t)}(x)\) are known to satisfy the so-called Toda lattice formulas as functions of \(t\). In this paper we consider a modification of the form \(e^{-t(\mathfrak{p}x+ \mathfrak{q}/x)}\) of measures or, more generally, of moment functionals, associated with orthogonal L-polynomials and show that the coefficients of the recurrence relation of these L-orthogonal polynomials satisfy what we call an extended relativistic Toda lattice. Most importantly, we also establish the so called Lax pair representation associated with this extended relativistic Toda lattice. These results also cover the (ordinary) relativistic Toda lattice formulations considered in the literature by assuming either \(\mathfrak{p}=0\) or \(\mathfrak{q}=0\). However, as far as Lax pair representation is concern, no complete Lax pair representations were established before for the respective relativistic Toda lattice formulations. Some explicit examples of extended relativistic Toda lattice and Langmuir lattice are also presented. As further results, the lattice formulas that follow from the three term recurrence relations associated with kernel polynomials on the unit circle are also established.


Relativistic Toda lattice Lax pairs L-orthogonal polynomials Kernel polynomials on the unit circle 

Mathematics Subject Classification (2000)

34A33 42C05 33C47 47E05 



The authors are grateful to the anonymous referees for a careful reading of the manuscript.


  1. 1.
    Ammar, G.S., Gragg, W.B.: Schur flows for orthogonal Hessenberg matrices. In: Hamiltonian and Gradient Flows, Algorithms and Control. Fields Inst. Commun., vol. 3, pp. 27–34. American Mathematical Society, Providence (1994) Google Scholar
  2. 2.
    Bruschi, M., Ragnisco, O.: Recursion operator and Bäcklund transformations for the Ruijsenaars–Toda lattice. Phys. Lett. A 129, 21–25 (1988) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruschi, M., Ragnisco, O.: Lax representation and complete integrability for the periodic relativistic Toda lattice. Phys. Lett. A 134, 365–370 (1989) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Mathematics and Its Applications Series. Gordon & Breach, New York (1978) zbMATHGoogle Scholar
  6. 6.
    Common, A.K.: A solution of the initial value problem for half-infinite integrable lattice systems. Inverse Probl. 8, 393–408 (1992) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Common, A.K., Hafez, S.T.: Linearization of the relativistic and discrete-time Toda lattices for particular boundary conditions. Inverse Probl. 8, 59–69 (1992) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Costa, M.S., Felix, H.M., Sri Ranga, A.: Orthogonal polynomials on the unit circle and chain sequences. J. Approx. Theory 173, 14–32 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Coussement, J., Kuijlaars, A., Van Assche, W.: Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials. Inverse Probl. 18, 923–942 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Daruis, L., Njåstad, O., Van Assche, W.: Para-orthogonal polynomials in frequency analysis. Rocky Mt. J. Math. 33, 629–645 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deift, P.A.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3. New York University, Courant Institute of Mathematical Sciences. AMS, Providence (1999) zbMATHGoogle Scholar
  12. 12.
    Felix, H.M., Sri Ranga, A., Veronese, D.O.: Kernel polynomials from L-orthogonal polynomials. Appl. Numer. Math. 61, 651–665 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Golinskii, L.: Schur flows and orthogonal polynomials on the unit circle. Sb. Math. 197, 1145–1165 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in one Variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005) CrossRefzbMATHGoogle Scholar
  15. 15.
    Jones, W.B., Njåstad, O., Thron, W.J.: Two point Padé expansions for a family of analytic functions. J. Comput. Appl. Math. 9, 105–123 (1983) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jones, W.B., Thron, W.J., Waadeland, H.: A strong Stieltjes moment problem. Trans. Am. Math. Soc. 206, 503–528 (1980) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kharchev, S., Mironov, A., Zhedanov, A.: Faces of relativistic Toda chain. Int. J. Mod. Phys. A 12, 2675–2724 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Mukaihira, A., Nakamura, Y.: Schur flow for orthogonal polynomials on the unit circle and its integrable discretization. J. Comput. Appl. Math. 139, 75–94 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Nakamura, Y.: A new approach to numerical algorithms in terms of integrable systems. In: Proceedings of the International Conference on Informatics Research for Development of Knowledge Society Infrastructure, ICKS, pp. 194–205 (2004) Google Scholar
  20. 20.
    Nenciu, I.: Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle. Int. Math. Res. Not. 11, 647–686 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Peherstorfer, F.: On Toda lattices and orthogonal polynomials. J. Comput. Appl. Math. 133, 519–534 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ruijsenaars, S.N.M.: Relativistic Toda systems. Commun. Math. Phys. 133, 217–247 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Silva, A.P., Sri Ranga, A.: Polynomials generated by a three term recurrence relation: bounds for complex zeros. Linear Algebra Appl. 397, 299–324 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1. Classical Theory. American Mathematical Society Colloquium Publications, vol. 54. AMS, Providence (2005) zbMATHGoogle Scholar
  25. 25.
    Sri Ranga, A.: Symmetric orthogonal polynomials and the associated orthogonal L-polynomials. Proc. Am. Math. Soc. 123, 3135–3141 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Sri Ranga, A.: Companion orthogonal polynomials. J. Comput. Appl. Math. 75, 23–33 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Sri Ranga, A., Andrade, E.X.L.: Zeros of polynomials which satisfy a certain three term recurrence relation. In: Comm. Anal. Theory Contin. Fractions, vol. 1, pp. 61–65 (1992) Google Scholar
  28. 28.
    Sri Ranga, A., Andrade, E.X.L., McCabe, J.H.: Some consequences of symmetry in strong distributions. J. Math. Anal. Appl. 193, 158–168 (1995) MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Sri Ranga, A., McCabe, J.H.: On pairwise related strong Stieltjes distributions. K. Nor. Vidensk. Selsk. 3, 3–12 (1996) zbMATHGoogle Scholar
  30. 30.
    Sri Ranga, A., Van Assche, W.: Blumenthal’s theorem for Laurent orthogonal polynomials. J. Approx. Theory 117, 255–278 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Suris, Y.B.: A discrete-time relativistic Toda lattice. J. Phys. A, Math. Gen. 29, 451–465 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Suris, Y.B.: New integrable systems related to the relativistic Toda lattice. J. Phys. A, Math. Gen. 30, 1745–1761 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Suris, Y.B.: The Problem of Integrable Discretization: Hamiltonian Approach. Progress in Mathematics, vol. 219. Birkhäuser, Basel (2003) CrossRefzbMATHGoogle Scholar
  34. 34.
    Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society Colloquium Publications, vol. 23. AMS, Providence (1975) zbMATHGoogle Scholar
  35. 35.
    Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967) CrossRefGoogle Scholar
  36. 36.
    Zhedanov, A.: The “classical” Laurent biorthogonal polynomials. J. Comput. Appl. Math. 98, 121–147 (1998) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Departamento de Matemática AplicadaUNESP–Univ Estadual PaulistaSão José do Rio PretoBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal do MaranhãoSão LuísBrazil

Personalised recommendations