Advertisement

Acta Applicandae Mathematicae

, Volume 162, Issue 1, pp 121–143 | Cite as

Hamiltonian Symmetry Reduction via Localizations: Theory and Application to a Barbell System

  • Jürgen ScheurleEmail author
  • Sebastian Walcher
Article
  • 43 Downloads

Abstract

We specialize a recently introduced variant of orbit space reduction for symmetric Hamiltonian systems. This variant works with suitable localizations of the algebra of polynomial invariants of the corresponding symmetry group action, and provides reduction to a variety that is embedded in a low-dimensional affine space, which makes efficient computations possible. As an example, we discuss the mechanical system of a “barbell” in a general central force field.

Keywords

Linear groups Invariant theory Hamiltonian systems with symmetry Relative equilibria 

Mathematics Subject Classification

34C20 13A50 34C14 37C80 

Notes

Acknowledgements

The authors thank anonymous reviewers of the present and an earlier version of this paper for helpful comments, and they gratefully acknowledge the support of the Research in Pairs (RIP) program of Mathematisches Forschungsinstitut Oberwolfach (MFO) in 2017.

References

  1. 1.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978) CrossRefGoogle Scholar
  2. 2.
    Bredon, G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972) zbMATHGoogle Scholar
  3. 3.
    Celletti, A., Sidorenko, V.: Some properties of dumbbell satellite attitude dynamics. Celest. Mech. Dyn. Astron. 101, 105–126 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chossat, P.: The reduction of equivariant dynamics to the orbit space of compact group actions. Acta Appl. Math. 70, 71–94 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cushman, R.H., Bates, L.: Global Aspects of Classical Integrable Systems, 2nd edn. Birkhäuser, Boston (2015) CrossRefzbMATHGoogle Scholar
  6. 6.
    Field, M.J.: Equivariant dynamical systems. Trans. Am. Math. Soc. 259, 185–205 (1980) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Grosshans, F.D.: Localization and invariant theory. Adv. Math. 21, 50–60 (1976) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Grosshans, F.D., Scheurle, J., Walcher, S.: Invariant sets forced by symmetry. J. Geom. Mech. 4, 281–296 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Humphreys, J.E.: Linear Algebraic Groups. Springer, New York (1975) CrossRefzbMATHGoogle Scholar
  10. 10.
    Kirchgraber, U., Manz, U., Stoffer, D.: Rigorous proof of chaotic behaviour in a dumbbell satellite model. J. Math. Anal. Appl. 251, 897–911 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Krupa, M., Schagerl, M., Steindl, A., Troger, H.: Stability of relative equilibria, Part I: Comparison of four methods. Meccanica 35, 325–351 (2001) CrossRefzbMATHGoogle Scholar
  12. 12.
    Krupa, M., Steindl, A., Troger, H.: Stability of relative equilibria, Part II: Dumbbell satellites. Meccanica 35, 353–371 (2001) CrossRefzbMATHGoogle Scholar
  13. 13.
    Kummer, M.: On the construction of the reduced phase space of a Hamiltonian system with symmetry. Indiana Univ. Math. J. 30, 281–292 (1981) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kushnirenko, A.G.: An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one. Funct. Anal. Appl. 1, 273–274 (1967) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Luna, D.: Fonctions differentibles invariantes sous l’operation d’un groupe reductif. Ann. Inst. Fourier (Grenoble) 26, 33–49 (1976) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Marsden, J.: Lectures on Mechanics. London Math. Soc. Lecture Notes, vol. 174. Cambridge University Press, Cambridge (1992) CrossRefzbMATHGoogle Scholar
  17. 17.
    Marsden, J., Ratiu, T.: An Introduction to Mechanics and Symmetry. Springer, New York (1994) CrossRefzbMATHGoogle Scholar
  18. 18.
    Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ortega, J.-P., Ratiu, T.: Momentum Maps and Hamiltonian Reduction. Birkhäuser, Boston (2004) CrossRefzbMATHGoogle Scholar
  20. 20.
    Poénaru, V.: Singularités \(C^{\infty }\) en présence de symétrie. Lecture Notes in Mathematics, vol. 510. Springer, Berlin (1976) CrossRefzbMATHGoogle Scholar
  21. 21.
    Procesi, C., Schwarz, G.: Inequalities defining orbit spaces. Invent. Math. 81, 539–554 (1985) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Santoprete, M., Scheurle, J., Walcher, S.: Motion in a symmetric potential on the hyperbolic plane. Can. J. Math. 67, 450–480 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Scheurle, J.: Some aspects of successive bifurcations in the Couette-Taylor problem. In: Chadam, J., Golubitsky, M., Langford, W.F., Wetton, B. (eds.) Pattern Formation: Symmetry Methods and Applications. Fields Inst. Comm., vol. 5, pp. 335–345 (1996) Google Scholar
  24. 24.
    Schwarz, G.W.: Smooth functions invariant under the action of a compact Lie group. Topology 14, 63–68 (1975) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Simo, J.C., Lewis, D., Marsden, J.E.: Stability of relative equilibria. Part I: The reduced energy-momentum method. Arch. Ration. Mech. Anal. 115, 15–59 (1991) CrossRefzbMATHGoogle Scholar
  26. 26.
    Schroeders, R.: Symmetriereduktion polynomieller Vektorfelder. Doctoral thesis, RWTH Aachen (2019, to be submitted) Google Scholar
  27. 27.
    Schroeders, R., Walcher, S.: Orbit space reduction and localizations. Indag. Math. 27, 1265–1278 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shafarevich, I.R.: Basic Algebraic Geometry. Springer, New York (1977) zbMATHGoogle Scholar
  29. 29.
    Uldall Kristiansen, K., Palmer, B., Roberts, M.: A unification of models of tethered satellites. SIAM J. Appl. Dyn. Syst. 10, 1042–1069 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wang, L.-S., Krishnaprasad, P.S., Maddocks, J.H.: Hamiltonian dynamics of a rigid body in a central gravitational field. Celest. Mech. Dyn. Astron. 50, 349–386 (1990) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Zentrum MathematikTU MünchenGarchingGermany
  2. 2.Lehrstuhl A für MathematikRWTH AachenAachenGermany

Personalised recommendations