Design of an Adhesive Film-Based Microfluidic Device for Alginate Hydrogel-Based Cell Encapsulation

  • 40 Accesses


To support the increasing translational use of transplanted cells, there is a need for high-throughput cell encapsulation technologies. Microfluidics is a particularly promising candidate technology to address this need, but conventional polydimethylsiloxane devices have encountered challenges that have limited their utility, including clogging, leaking, material swelling, high cost, and limited scalability. Here, we use a rapid prototyping approach incorporating patterned adhesive thin films to develop a reusable microfluidic device that can produce alginate hydrogel microbeads with high-throughput potential for microencapsulation applications. We show that beads formed in our device have high sphericity and monodispersity. We use the system to demonstrate effective cell encapsulation of mesenchymal stem cells and show that they can be maintained in culture for at least 28 days with no measurable reduction in viability. Our approach is highly scalable and will support diverse translational applications of microencapsulated cells.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5


  1. 1.

    Abate, A. R., M. Kutsovsky, S. Seiffert, M. Windbergs, L. F. Pinto, A. Rotem, A. S. Utada, and D. A. Weitz. Synthesis of monodisperse microparticles from non-Newtonian polymer solutions with microfluidic devices. Adv. Mater. 23(15):1757–1760, 2011.

  2. 2.

    Akbari, S., and T. Pirbodaghi. Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach. Microfluid. Nanofluid. 16(4):773–777, 2014.

  3. 3.

    Andersson, H., and A. Van den Berg. Microfluidic devices for cellomics: a review. Sens. Actuators B 92(3):315–325, 2003.

  4. 4.

    Atencia, J., G. A. Cooksey, and L. E. Locascio. A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12(2):309–316, 2012.

  5. 5.

    Boura, J. S., M. Vance, W. Yin, C. Madeira, C. L. Da Silva, C. D. Porada, and G. Almeida-Porada. Evaluation of gene delivery strategies to efficiently overexpress functional HLA-G on human bone marrow stromal cells. Mol. Ther. Methods Clin. Dev. 2014.

  6. 6.

    Breslouer, O. Rayleigh–Plateau Instability: Falling Jet. Project Report. 2010.

  7. 7.

    Chabert, M., and J.-L. Viovy. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl Acad. Sci. USA 105(9):3191–3196, 2008.

  8. 8.

    Chaurasia, A. S., and S. Sajjadi. Millimetric core–shell drops via buoyancy assisted non-confined microfluidics. Chem. Eng. Sci. 129:260–270, 2015.

  9. 9.

    Choi, C.-H., J.-H. Jung, Y. W. Rhee, D.-P. Kim, S.-E. Shim, and C.-S. Lee. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed. Microdevices 9(6):855–862, 2007.

  10. 10.

    Christopher, G. F., N. N. Noharuddin, J. A. Taylor, and S. L. Anna. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78(3):036317, 2008.

  11. 11.

    Chung, B. G., K.-H. Lee, A. Khademhosseini, and S.-H. Lee. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1):45–59, 2012.

  12. 12.

    Cirone, P., F. Shen, and P. L. Chang. A multiprong approach to cancer gene therapy by coencapsulated cells. Cancer Gene Ther. 12(4):369, 2005.

  13. 13.

    Clausell-Tormos, J., D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, and H. Duan. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15(5):427–437, 2008.

  14. 14.

    Collins, D. J., A. Neild, A. deMello, A.-Q. Liu, and Y. Ai. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15(17):3439–3459, 2015.

  15. 15.

    Cooksey, G. A., and J. Atencia. Pneumatic valves in folded 2D and 3D fluidic devices made from plastic films and tapes. Lab Chip 14(10):1665–1668, 2014.

  16. 16.

    De Vos, P., B. De Haan, G. Wolters, J. Strubbe, and R. Van Schilfgaarde. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40(3):262–270, 1997.

  17. 17.

    de Vos, P., M. M. Faas, B. Strand, and R. Calafiore. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617, 2006.

  18. 18.

    Dvir-Ginzberg, M., T. Elkayam, and S. Cohen. Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J. 22(5):1440–1449, 2008.

  19. 19.

    Edd, J. F., D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264, 2008.

  20. 20.

    Gelb, H., H. Ralph Schumacher, J. Cuckler, and D. G. Baker. In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area. J. Orthop. Res. 12(1):83–92, 1994.

  21. 21.

    Gombotz, W. R., and S. Wee. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3):267–285, 1998.

  22. 22.

    Huang, K.-S., T.-H. Lai, and Y.-C. Lin. Manipulating the generation of Ca–alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6(7):954–957, 2006.

  23. 23.

    Huang, H., Y. Yu, Y. Hu, X. He, O. B. Usta, and M. L. Yarmush. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip 17(11):1913–1932, 2017.

  24. 24.

    Jayasinghe, S. N., A. N. Qureshi, and P. A. Eagles. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2(2):216–219, 2006.

  25. 25.

    Jenkins, G., and C. D. Mansfield. Microfluidic Diagnostics: Methods and Protocols. Cham: Springer, 2013.

  26. 26.

    Jing, T., R. Ramji, M. E. Warkiani, J. Han, C. T. Lim, and C.-H. Chen. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens. Bioelectron. 66:19–23, 2015.

  27. 27.

    Köster, S., F. E. Angile, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, and A. D. Griffiths. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7):1110–1115, 2008.

  28. 28.

    Krishnamurthy, N., and B. Gimi. Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit. Rev. Biomed. Eng. 2011.

  29. 29.

    Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012.

  30. 30.

    Liu, K., Y. Deng, N. Zhang, S. Li, H. Ding, F. Guo, W. Liu, S. Guo, and X.-Z. Zhao. Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid. Nanofluid. 13(5):761–767, 2012.

  31. 31.

    Martinez, C. J., J. W. Kim, C. Ye, I. Ortiz, A. C. Rowat, M. Marquez, and D. Weitz. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol. Biosci. 12(7):946–951, 2012.

  32. 32.

    McQuilling, J., J. Arenas-Herrera, C. Childers, R. Pareta, O. Khanna, B. Jiang, E. Brey, A. Farney, and E. Opara. New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant. Proc. 43:3262–3264, 2011.

  33. 33.

    Meier, R. P., R. Mahou, P. Morel, J. Meyer, E. Montanari, Y. D. Muller, P. Christofilopoulos, C. Wandrey, C. Gonelle-Gispert, and L. H. Bühler. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J. Hepatol. 62(3):634–641, 2015.

  34. 34.

    Nasef, A., N. Mathieu, A. Chapel, J. Frick, S. François, C. Mazurier, A. Boutarfa, S. Bouchet, N.-C. Gorin, and D. Thierry. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84(2):231–237, 2007.

  35. 35.

    Ngo, I.-L., T.-D. Dang, C. Byon, and S. W. Joo. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction. Biomicrofluidics 9(2):024107, 2015.

  36. 36.

    Nunes, J., S. Tsai, J. Wan, and H. Stone. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J. Phys. D 46(11):114002, 2013.

  37. 37.

    Opara, E. C., J. P. McQuilling, and A. C. Farney. Microencapsulation of pancreatic islets for use in a bioartificial pancreas. In: Organ Regeneration: Methods and Protocols, edited by J. Basu, and J. W. Ludlow. Totowa, NJ: Humana Press, 2013, pp. 261–266.

  38. 38.

    Pessi, J., H. A. Santos, I. Miroshnyk, D. A. Weitz, and S. Mirza. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int. J. Pharm. 472(1–2):82–87, 2014.

  39. 39.

    Ponticiello, M. S., R. M. Schinagl, S. Kadiyala, and F. P. Barry. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 52(2):246–255, 2000.

  40. 40.

    Ramdas, M., K. Dileep, Y. Anitha, W. Paul, and C. P. Sharma. Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery. J. Biomater. Appl. 13(4):290–296, 1999.

  41. 41.

    Rasband, W. S. ImageJ. Bethesda, MD: US National Institutes of Health, 2011.

  42. 42.

    Sajeesh, P., and A. K. Sen. Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluid. 17(1):1–52, 2014.

  43. 43.

    Sauret, A., and H. C. Shum. Beating the jetting regime. Int. J. Nonlinear Sci. Numer. Simul. 13(5):351–362, 2012.

  44. 44.

    Schmitz, C. H., A. C. Rowat, S. Köster, and D. A. Weitz. Dropspots: a picoliter array in a microfluidic device. Lab Chip 9(1):44–49, 2009.

  45. 45.

    Selmani, Z., A. Naji, E. Gaiffe, L. Obert, P. Tiberghien, N. Rouas-Freiss, E. D. Carosella, and F. Deschaseaux. HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87(9S):S62–S66, 2009.

  46. 46.

    Sharma, V., M. Hunckler, M. K. Ramasubramanian, E. C. Opara, and K. C. Katuri. Microfluidic approach to cell microencapsulation. cell microencapsulation, New York: Springer, 2017, pp. 71–76.

  47. 47.

    Shintaku, H., T. Kuwabara, S. Kawano, T. Suzuki, I. Kanno, and H. Kotera. Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst. Technol. 13(8–10):951–958, 2007.

  48. 48.

    Sia, S. K., and G. M. Whitesides. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576, 2003.

  49. 49.

    Sittadjody, S., J. M. Saul, J. P. McQuilling, S. Joo, T. C. Register, J. J. Yoo, A. Atala, and E. C. Opara. In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nat. Commun. 8(1):1858, 2017.

  50. 50.

    Tan, W. H., and S. Takeuchi. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19(18):2696–2701, 2007.

  51. 51.

    Tendulkar, S., J. McQuilling, C. Childers, R. Pareta, E. Opara, and M. Ramasubramanian. A scalable microfluidic device for the mass production of microencapsulated islets. Transplant. Proc. 43:3184–3187, 2011.

  52. 52.

    Tendulkar, S., M. K. Ramasubramanian, and E. C. Opara. Microencapsulation: the emerging role of microfluidics. Micro Nanosyst. 5(3):194–208, 2013.

  53. 53.

    Tønnesen, H. H., and J. Karlsen. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28(6):621–630, 2002.

  54. 54.

    Townsend-Nicholson, A., and S. N. Jayasinghe. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7(12):3364–3369, 2006.

  55. 55.

    Trivedi, V., E. S. Ereifej, A. Doshi, P. Sehgal, P. J. VandeVord, and A. S. Basu. Microfluidic encapsulation of cells in alginate capsules for high throughput screening. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009, pp. 7037–7040.

  56. 56.

    Utada, A., L.-Y. Chu, A. Fernandez-Nieves, D. Link, C. Holtze, and D. Weitz. Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull. 32(9):702–708, 2007.

  57. 57.

    Utada, A., E. Lorenceau, D. Link, P. Kaplan, H. Stone, and D. Weitz. Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541, 2005.

  58. 58.

    Utech, S., R. Prodanovic, A. S. Mao, R. Ostafe, D. J. Mooney, and D. A. Weitz. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv. Healthc. Mater. 4(11):1628–1633, 2015.

  59. 59.

    Velasco, D., E. Tumarkin, and E. Kumacheva. Microfluidic encapsulation of cells in polymer microgels. Small 8(11):1633–1642, 2012.

  60. 60.

    Venkatesan, J., I. Bhatnagar, P. Manivasagan, K.-H. Kang, and S.-K. Kim. Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72:269–281, 2015.

  61. 61.

    Whitesides, G. M. The origins and the future of microfluidics. Nature 442(7101):368, 2006.

  62. 62.

    Windbergs, M., Y. Zhao, J. Heyman, and D. A. Weitz. Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135(21):7933–7937, 2013.

  63. 63.

    Workman, V. L., S. B. Dunnett, P. Kille, and D. D. Palmer. On-chip alginate microencapsulation of functional cells. Macromol. Rapid Commun. 29(2):165–170, 2008.

  64. 64.

    Workman, V. L., L. B. Tezera, P. T. Elkington, and S. N. Jayasinghe. Controlled generation of microspheres incorporating extracellular matrix fibrils for three-dimensional cell culture. Adv. Funct. Mater. 24(18):2648–2657, 2014.

  65. 65.

    Xu, J., S. Li, J. Tan, and G. Luo. Controllable preparation of monodispersed calcium alginate microbeads in a novel microfluidic system. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 31(8):1223–1226, 2008.

  66. 66.

    Yamada, M., R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33(33):8304–8315, 2012.

  67. 67.

    Yang, Y., E. C. Opara, Y. Liu, A. Atala, and W. Zhao. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct. Exp. Biol. Med. 242(3):286–296, 2017.

Download references


The authors would like to acknowledge the support of Michael Hunckler, Michael LeCompte, and Paige Brabant for their technical help on this project. K.E. acknowledges support from the NIH T32 Training Program entitled Studies in Translational Regenerative Medicine (EB014836-01A1).

Author information

Correspondence to Emmanuel C. Opara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Sean S. Kohles oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 639 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Enck, K., Rajan, S.P., Aleman, J. et al. Design of an Adhesive Film-Based Microfluidic Device for Alginate Hydrogel-Based Cell Encapsulation. Ann Biomed Eng (2020) doi:10.1007/s10439-020-02453-9

Download citation


  • Alginate
  • Microencapsulation
  • Stem cell
  • Cell transplantation