Advertisement

An Integrated In Vitro–In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures

  • 81 Accesses

Abstract

Potential human and environmental hazards resulting from the exposure of living organisms to silver nanoparticles (Ag NPs) have been the subject of intensive discussion in the last decade. Despite the growing use of Ag NPs in biomedical applications, a quantification of the toxic effects as a function of the total silver mass reaching cells (namely, target cell dose) is still needed. To provide a more accurate dose-response analysis, we propose a novel integrated approach combining well-established computational and experimental methodologies. We first used a particokinetic model (ISD3) for providing experimental validation of computed Ag NP sedimentation in static-cuvette experiments. After validation, ISD3 was employed to predict the total mass of silver reaching human endothelial cells and hepatocytes cultured in 96 well plates. Cell viability measured after 24 h of culture was then related to this target cell dose. Our results show that the dose perceived by the cell monolayer after 24 h of exposure is around 85% lower than the administered nominal media concentration. Therefore, accurate dosimetry considering particle characteristics and experimental conditions (e.g., time, size and shape of wells) should be employed for better interpreting effects induced by the amount of silver reaching cells.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    AshaRani, P. V., G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290, 2009.

  2. 2.

    Beer, C., R. Foldbjerg, Y. Hayashi, D. S. Sutherland, and H. Autrup. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol. Lett. 208:286–292, 2012.

  3. 3.

    Behra, R., L. Sigg, M. J. D. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, and B. Rothen-Rutishauser. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J. R. Soc. Interface 10:20130396, 2013.

  4. 4.

    Böhmert, L., L. König, H. Sieg, D. Lichtenstein, N. Paul, A. Braeuning, A. Voigt, and A. Lampen. In vitro nanoparticle dosimetry for adherent growing cell monolayers covering bottom and lateral walls. Part. Fibre Toxicol. 15:42, 2018.

  5. 5.

    Bouwmeester, H., J. Poortman, R. J. Peters, E. Wijma, E. Kramer, S. Makama, K. Puspitaninganindita, H. J. P. Marvin, A. A. C. M. Peijnenburg, and P. J. M. Hendriksen. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103, 2011.

  6. 6.

    Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112:13608–13619, 2008.

  7. 7.

    Chakraborty, C., A. R. Sharma, G. Sharma, and S.-S. Lee. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnology 14:65, 2016.

  8. 8.

    Chen, N., Z.-M. Song, H. Tang, W.-S. Xi, A. Cao, Y. Liu, and H. Wang. Toxicological effects of Caco-2 cells following short-term and long-term exposure to Ag nanoparticles. Int. J. Mol. Sci. 17:974, 2016.

  9. 9.

    Comfort, K. K., E. I. Maurer, L. K. Braydich-Stolle, and S. M. Hussain. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5:10000–10008, 2011.

  10. 10.

    Cronholm, P., H. L. Karlsson, J. Hedberg, T. A. Lowe, L. Winnberg, K. Elihn, I. O. Wallinder, and L. Möller. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–982, 2013.

  11. 11.

    de Faria, A. F., D. S. T. Martinez, S. M. M. Meira, A. C. M. de Moraes, A. Brandelli, A. G. S. Filho, and O. L. Alves. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces 113:115–124, 2014.

  12. 12.

    De Loid, G. M., J. M. Cohen, G. Pyrgiotakis, S. V. Pirela, A. Pal, J. Liu, J. Srebric, and P. Demokritou. Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 12:32, 2015.

  13. 13.

    Dhakshinamoorthy, V., V. Manickam, and E. Perumal. Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotox. Res. 32:187–203, 2017.

  14. 14.

    Durán, N., C. P. Silveira, M. Durán, and D. S. T. Martinez. Silver nanoparticle protein corona and toxicity: a mini-review. J. Nanobiotechnology 13:55, 2015.

  15. 15.

    Filipović, N., M. Stevanović, A. Radulović, V. Pavlović, and D. Uskoković. Facile synthesis of poly(ε-caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Compos. Part B Eng. 45:1471–1479, 2013.

  16. 16.

    Foldbjerg, R., P. Olesen, M. Hougaard, D. A. Dang, H. J. Hoffmann, and H. Autrup. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190:156–162, 2009.

  17. 17.

    Ge, L., Q. Li, M. Wang, J. Ouyang, X. Li, and M. M. Q. Xing. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomed. 9:2399–2407, 2014.

  18. 18.

    Hsiao, I.-L., Y.-K. Hsieh, C.-F. Wang, I.-C. Chen, and Y.-J. Huang. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 49:3813–3821, 2015.

  19. 19.

    Kawata, K., M. Osawa, and S. Okabe. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43:6046–6051, 2009.

  20. 20.

    Kermanizadeh, A., B. K. Gaiser, G. R. Hutchison, and V. Stone. An in vitro liver model—assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part. Fibre Toxicol. 9:28, 2012.

  21. 21.

    Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A.-G. Lenz, T. Fernandes, R. P. F. Schins, F. R. Cassee, H. Wallin, W. Kreyling, T. Stoeger, S. Loft, P. Møller, L. Tran, and V. Stone. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA Project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Heal. Part B 19:1–28, 2016.

  22. 22.

    Kermanizadeh, A., M. Roursgaard, S. Messner, P. Gunness, J. M. Kelm, P. Møller, V. Stone, and S. Loft. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part. Fibre Toxicol. 11:56, 2014.

  23. 23.

    Kermanizadeh, A., S. Vranic, S. Boland, K. Moreau, A. Baeza-Squiban, B. K. Gaiser, L. A. Andrzejczuk, and V. Stone. An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 14:96, 2013.

  24. 24.

    Kim, S., J. E. Choi, J. Choi, K.-H. Chung, K. Park, J. Yi, and D.-Y. Ryu. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. Vitr. 23:1076–1084, 2009.

  25. 25.

    Klein, C. L., S. Comero, B. Stahlmecke, J. Romazanov, T. A. J. Kuhlbusch, E. V Doren, P. J. D. Temmerman, J. Mast, P. Wick, and H. Krug. NM-series of representative manufactured nanomaterials. NM-300 silver. characterisation, stability, homogeneity. JRC Scientific and Technical Reports 2011. Google Sch. 2013.

  26. 26.

    Le, Q. H., and A. T. Le. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4:33001, 2013.

  27. 27.

    Li, Y., Y. Zhang, and B. Yan. Nanotoxicity overview: nano-threat to susceptible populations. Int. J. Mol. Sci. 15:3671–3697, 2014.

  28. 28.

    Liu, R., H. H. Liu, Z. Ji, C. H. Chang, T. Xia, A. E. Nel, and Y. Cohen. Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model. ACS Nano 9:9303–9313, 2015.

  29. 29.

    Mattei, G., C. Magliaro, S. Giusti, S. D. Ramachandran, S. Heinz, J. Braspenning, and A. Ahluwalia. On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS ONE 12:e0173206, 2017.

  30. 30.

    McShan, D., P. C. Ray, and H. Yu. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22:116–127, 2014.

  31. 31.

    Morris, V. J. Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol. 29:509–516, 2011.

  32. 32.

    Mukherjee, D., B. F. Leo, S. G. Royce, A. E. Porter, M. P. Ryan, S. Schwander, K. F. Chung, T. D. Tetley, J. Zhang, and P. G. Georgopoulos. Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver. J. Nanoparticle Res. 16:2616, 2014.

  33. 33.

    Oomen, G. A., A. E. Bleeker, M. P. Bos, F. van Broekhuizen, S. Gottardo, M. Groenewold, D. Hristozov, K. Hund-Rinke, M.-A. Irfan, A. Marcomini, J. W. Peijnenburg, K. Rasmussen, S. A. Jiménez, J. J. Scott-Fordsmand, M. van Tongeren, K. Wiench, W. Wohlleben, and R. Landsiedel. Grouping and read-across approaches for risk assessment of nanomaterials. 12:13415–13434, 2015.

  34. 34.

    Park, M. V. D. Z., A. M. Neigh, J. P. Vermeulen, L. J. J. de la Fonteyne, H. W. Verharen, J. J. Briedé, H. van Loveren, and W. H. de Jong. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817, 2011.

  35. 35.

    Rahman, M. F., J. Wang, T. A. Patterson, U. T. Saini, B. L. Robinson, G. D. Newport, R. C. Murdock, J. J. Schlager, S. M. Hussain, and S. F. Ali. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187:15–21, 2009.

  36. 36.

    Rai, M., K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98:1951–1961, 2014.

  37. 37.

    Smith, J. N., D. G. Thomas, H. Jolley, V. K. Kodali, M. H. Littke, P. Munusamy, D. R. Baer, M. J. Gaffrey, B. D. Thrall, and J. G. Teeguarden. All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles. Part. Fibre Toxicol. 15:47, 2018.

  38. 38.

    Sohal, I. S., K. S. O’Fallon, P. Gaines, P. Demokritou, and D. Bello. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part. Fibre Toxicol. 15:29, 2018.

  39. 39.

    Stevanović, M., B. Kovačević, J. Petković, M. Filipič, and D. Uskoković. Effect of poly-α, γ, l-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. Int. J. Nanomed. 6:2837–2847, 2011.

  40. 40.

    Sun, J., Q. Zhang, Z. Wang, and B. Yan. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int. J. Mol. Sci. 14:9319–9337, 2013.

  41. 41.

    Theodorou, I. G., K. H. Müller, S. Chen, A. E. Goode, V. Yufit, M. P. Ryan, and A. E. Porter. Silver nanowire particle reactivity with human monocyte-derived macrophage cells: intracellular availability of silver governs their cytotoxicity. ACS Biomater. Sci. Eng. 3:2336–2347, 2017.

  42. 42.

    Thomas, D. G., J. N. Smith, B. D. Thrall, D. R. Baer, H. Jolley, P. Munusamy, V. Kodali, P. Demokritou, J. Cohen, and J. G. Teeguarden. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part. Fibre Toxicol. 15:6, 2018.

  43. 43.

    Tiwari, D. K., T. Jin, and J. Behari. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods 21:13–24, 2011.

  44. 44.

    Tlili, A., J. Jabiol, R. Behra, C. Gil-Allué, and M. O. Gessner. Chronic exposure effects of silver nanoparticles on stream microbial decomposer communities and ecosystem functions. Environ. Sci. Technol. 51:2447–2455, 2017.

  45. 45.

    Ucciferri, N., E.-M. Collnot, B. K. Gaiser, A. Tirella, V. Stone, C. Domenici, C.-M. Lehr, and A. Ahluwalia. In vitro toxicological screening of nanoparticles on primary human endothelial cells and the role of flow in modulating cell response. Nanotoxicology 8:697–708, 2014.

  46. 46.

    Vibe, C. B., F. Fenaroli, D. Pires, S. R. Wilson, V. Bogoeva, R. Kalluru, M. Speth, E. Anes, G. Griffiths, and J. Hildahl. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology 10:680–688, 2016.

  47. 47.

    Vinci, B., D. Cavallone, G. Vozzi, D. Mazzei, C. Domenici, M. Brunetto, and A. Ahluwalia. In vitro liver model using microfabricated scaffolds in a modular bioreactor. Biotechnol. J. 5:232–241, 2010.

  48. 48.

    Wang, Y., W. G. Aker, H. Hwang, C. G. Yedjou, H. Yu, and P. B. Tchounwou. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci. Total Environ. 409:4753–4762, 2011.

  49. 49.

    Wang, X., Z. Ji, C. H. Chang, H. Zhang, M. Wang, Y.-P. Liao, S. Lin, H. Meng, R. Li, B. Sun, L. Van Winkle, K. E. Pinkerton, J. I. Zink, T. Xia, and A. E. Nel. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385–398, 2014.

  50. 50.

    Williams, K. M., K. Gokulan, C. E. Cerniglia, and S. Khare. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnol. 14:62, 2016.

  51. 51.

    Wu, Y.-L., N. Putcha, K. W. Ng, D. T. Leong, C. T. Lim, S. C. J. Loo, and X. Chen. Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc. Chem. Res. 46:782–791, 2013.

  52. 52.

    Wu, T., and M. Tang. Review of the effects of manufactured nanoparticles on mammalian target organs. J. Appl. Toxicol. 38:25–40, 2018.

  53. 53.

    Yang, C.-H., L.-S. Wang, S.-Y. Chen, M.-C. Huang, Y.-H. Li, Y.-C. Lin, P.-F. Chen, J.-F. Shaw, and K.-S. Huang. Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications. Int. J. Pharm. 510:493–500, 2016.

  54. 54.

    Zhang, Y. Cell toxicity mechanism and biomarker. Clin. Transl. Med. 7:34, 2018.

Download references

Acknowledgments

The work leading to this paper has received funding from the European Union’s H2020 research and innovation programme under Grant Agreement No. 760813 (PATROLS).

Author Contributions

DP analyzed the data. NU performed experiments. DP, GM and AA wrote the paper and interpreted the data. DP and AA edited and prepared the final layout. All authors gave final approval of the paper.

Disclosure

The authors have no relevant interests to disclose.

Data Availability

Data are available from the corresponding author upon reasonable request.

Author information

Correspondence to Arti Ahluwalia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Merryn Tawhai oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (PDF 258 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Poli, D., Mattei, G., Ucciferri, N. et al. An Integrated In Vitro–In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures. Ann Biomed Eng (2020). https://doi.org/10.1007/s10439-020-02449-5

Download citation

Keywords

  • Particokinetic model
  • Diffusion
  • Dissolution
  • Sedimentation
  • Ag nanoparticles