Advertisement

Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer

  • D. M. Valcourt
  • M. N. Dang
  • J. Wang
  • E. S. DayEmail author
S.I. : Biomaterials - Engineering Cell Behavior

Abstract

The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.

Keywords

Small molecule RNA interference Antibody Multivalency Drug delivery Gene regulation Nanocarrier Nanomedicine 

Notes

Acknowledgments

This work was supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under Award Number R35GM119659 and by the National Cancer Institute of NIH under Award Number R01CA211925. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflict of interest

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Aburjania, Z., S. Jang, J. Whitt, R. Jaskula-Stzul, H. Chen, and J. B. Rose. The role of Notch3 in cancer. Oncologist 23:1–12, 2018.CrossRefGoogle Scholar
  2. 2.
    Arend, R. C., A. I. Londoño-Joshi, A. Gangrade, A. A. Katre, C. Kurpad, Y. Li, R. S. Samant, P.-K. Li, C. N. Landen, E. S. Yang, B. Hidalgo, R. D. Alvarez, J. M. Straughn, A. Forero, and D. J. Buchsbaum. Niclosamide and its analogs are potent inhibitors of Wnt/β-catenin, mTOR and STAT3 signaling in ovarian cancer. Oncotarget 7:86803–86815, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Arruebo, M., M. Valladares, and A. Gonzalez-Fernandez. Antibody-conjugated nanoparticles for biomedical applications. J. Nanomater. 2009.  https://doi.org/10.1155/2009/439389.CrossRefGoogle Scholar
  4. 4.
    Aste-Amezaga, M., et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS ONE 5:e9094, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bartscherer, K., N. Pelte, D. Ingelfinger, and M. Boutros. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–533, 2006.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Basson, M. A. Signaling in cell differentiation and morphogenesis. Cold Spring Harb. Perspect. Biol. 4:a008151, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bhattacharyya, J., X.-R. Ren, R. A. Mook, J. Wang, I. Spasojevic, R. T. Premont, X. Li, A. Chilkoti, and W. Chen. Niclosamide-conjugated polypeptide nanoparticles inhibit Wnt signaling and colon cancer growth. Nanoscale 9:12709–12717, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Biktasova, A. K., D. F. Dudimah, R. V. Uzhachenko, K. Park, A. Akhter, R. R. Arasada, J. V. Evans, S. V. Novitskiy, E. E. Tchekneva, D. P. Carbone, A. Shanker, and M. M. Dikov. Multivalent forms of the Notch ligand DLL-1 enhance antitumor T-cell immunity in lung cancer and improve efficacy of EGFR-targeted therapy. Cancer Res. 75:4728–4742, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Borah, A., V. Palaninathan, A. R. Girija, S. Balasubramanian, A. K. Rochani, T. Maekawa, and D. S. Kumar. Poly-lactic-co-glycolic acid nanoformulation of small molecule antagonist GANT61 for cancer annihilation by modulating hedgehog pathway. NanoWorld J. 3:1–10, 2017.CrossRefGoogle Scholar
  10. 10.
    Borggrefe, T., M. Lauth, A. Zwijsen, D. Huylebroeck, F. Oswald, and B. D. Giaimo. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGFβ/BMP and hypoxia pathways. Biochim. Biophys. Acta 303–313:2016, 1863.Google Scholar
  11. 11.
    Briscoe, J., and P. P. Therond. The mechanisms of Hedgehog signalling and its roles in development and disease. Nature 14:416–429, 2013.Google Scholar
  12. 12.
    Burke, A. R., R. N. Singh, D. L. Carroll, F. M. Torti, and S. V. Torti. Targeting cancer stem cells with nanoparticle-enabled therapies. J. Mol. Biomark. Diagn. 2013.  https://doi.org/10.4172/2155-9929.S8-003.CrossRefGoogle Scholar
  13. 13.
    Carballo, G. B., J. R. Honorato, G. P. F. de Lopes, and T. C. L. de Sampaio e Spohr. A highlight on Sonic hedgehog pathway. Cell Commun. Signal. 16:1–15, 2018.CrossRefGoogle Scholar
  14. 14.
    Che-Ming, H. J., L. Zhang, S. Aryal, C. Cheung, R. H. Fang, and L. Zhang. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. 108:10980–10985, 2011.CrossRefGoogle Scholar
  15. 15.
    Chen, R. P., and D. Blackstock. Dynamic protein assembly by programmable DNA strand displacement. Nat. Chem. 2018.  https://doi.org/10.1038/s41557-018-0016-9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chen, J. K., J. Taipale, M. K. Cooper, and P. A. Beachy. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16:2743–2748, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chenna, V., C. Hu, D. Pramanik, B. T. Aftab, C. Karikari, N. R. Campbell, S.-M. Hong, M. Zhao, M. A. Rudek, S. R. Khan, C. M. Rudin, and A. Maitra. A polymeric nanoparticle encapsulated small molecule inhibitor of Hedgehog signaling (NanoHHI) bypasses secondary mutational resistance to Smoothened antagonists. Mol. Cancer Ther. 11:165–173, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chim, C. S., R. Pang, T. K. Fung, C. L. Choi, and R. Liang. Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia 21:2527–2536, 2007.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Cook, N., B. Basu, D.-M. Smith, A. Gopinathan, J. Evans, W. P. Steward, D. Palmer, D. Propper, B. Venugopal, M. Hategan, D. A. Anthoney, L. V. Hampson, M. Nebozhyn, D. Tuveson, H. Farmer-Hall, H. Turner, R. McLeod, S. Halford, and D. Jodrell. A phase I trial of the gamma-secretase inhibitor MK-0752 in combination with gemcitabine in patients with pancreatic ductal adenocarcinoma. Br. J. Cancer 118:793–801, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Courtois-Cox, S., S. L. Jones, and K. Cichowski. Many roads lead to oncogene-induced senescence. Oncogene 27:2801–2809, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Dai, Q., C. Walkey, and W. C. W. Chan. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. 53:5093–5096, 2014.CrossRefGoogle Scholar
  22. 22.
    Dai, Q., S. Wilhelm, D. Ding, A. M. Syed, S. Sindhwani, Y. Zhang, Y. Y. Chen, P. MacMillan, and W. C. W. Chan. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano 12:8423–8435, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Deng, X., M. Cao, J. Zhang, K. Hu, Z. Yin, Z. Zhou, X. Xiao, Y. Yang, W. Sheng, Y. Wu, and Y. Zeng. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35:4333–4344, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    di Magliano, M. P., and M. Hebrok. Hedgehog signalling in cancer formation and maintenance. Nat. Rev. 3:903–911, 2003.CrossRefGoogle Scholar
  25. 25.
    Dominska, M., and D. M. Dykxhoorn. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci. 123:1183–1189, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Elzi, D. J., M. Song, K. Hakala, S. T. Weintraub, and Y. Shiio. Wnt antagonist SFRP1 functions as a secreted mediator of senescence. Mol. Cell. Biol. 32:4388–4399, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Espinoza, I., and L. Miele. Notch inhibitors for cancer treatment. Pharmacol. Ther. 139:95–110, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Fay, B. L., J. R. Melamed, and E. S. Day. Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells. Int. J. Nanomed. 10:6931–6941, 2015.Google Scholar
  29. 29.
    Ganesh, S., M. Koser, W. Cyr, G. Chopda, J. Tao, X. Shui, B. Ying, D. Chen, P. Pandya, E. Chipumuro, Z. Siddiquee, K. Craig, C. Lai, H. Dudek, S. Monga, W. Wang, B. D. Brown, and M. Abrams. Direct pharmacological inhibition of beta-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther. 15:2143–2154, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ghoshal, A., U. Goswami, A. K. Sahoo, A. Chattopadhyay, and S. S. Ghosh. Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer theranostics. ACS Biomater. Sci. Eng. 1:1256–1266, 2015.CrossRefGoogle Scholar
  31. 31.
    Goyal, R., C. H. Kapadia, J. R. Melamed, R. S. Riley, and E. S. Day. Layer-by-layer assembled gold nanoshells for the intracellular delivery of miR-34a. Cell. Mol. Bioeng. 11:383–396, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gupta, B., T. S. Levchenko, and V. P. Torchilin. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv. Drug Deliv. Rev. 57:637–651, 2005.PubMedCrossRefGoogle Scholar
  33. 33.
    Habets, R. A., C. E. de Bock, L. Serneels, I. Lodewijckx, D. Verbeke, D. Nittner, R. Narlawar, S. Demeyer, J. Dooley, A. Liston, T. Taghon, J. Cools, and B. de Strooper. Safe targeting of T cell acute lymphoblastic leukemia by pathology-specific NOTCH inhibition. Sci. Transl. Med. 29:11, 2019.Google Scholar
  34. 34.
    Hanahan, D., and R. A. Weinberg. The hallmarks of cancer. Cell 100:57–70, 2000.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.CrossRefGoogle Scholar
  36. 36.
    Harrison, H., G. Farnie, S. J. Howell, R. E. Rock, S. Stylianou, K. R. Brennan, N. J. Bundred, and R. B. Clarke. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res. 70:709–719, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hayashi, T., K. M. Gust, A. W. Wyatt, A. Goriki, W. Jager, S. Awrey, N. Li, H. Z. Oo, M. Altamirano-Dimas, R. Buttyan, L. Fazli, A. Matsubara, and P. C. Black. Not all NOTCH Is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin. Cancer Res. 22:2981–2993, 2016.PubMedCrossRefGoogle Scholar
  38. 38.
    Hong, I.-S., G.-B. Jang, H.-Y. Lee, and J.-S. Nam. Targeting cancer stem cells by using the nanoparticles. Int. J. Nanomed. 10:251–260, 2015.Google Scholar
  39. 39.
    Houschyar, K. S., C. Tapking, M. R. Borrelli, D. Popp, D. Duscher, Z. N. Maan, M. P. Chelliah, J. Li, K. Harati, C. Wallner, S. Rein, D. Pförringer, G. Reumuth, G. Grieb, S. Mouraret, M. Dadras, J. M. Wagner, J. Y. Cha, F. Siemers, M. Lehnhardt, and B. Behr. Wnt pathway in bone repair and regeneration—what do we know so far. Front. Cell Dev. Biol. 6:1–13, 2019.CrossRefGoogle Scholar
  40. 40.
    Hu, K., H. Zhou, Y. Liu, Z. Liu, J. Liu, J. Tang, J. Li, J. Zhang, W. Sheng, Y. Zhao, Y. Wu, and C. Chen. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells. Nanoscale 7:8607–8618, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Hua, S., M. B. C. de Matos, J. M. Metselaar, and G. Storm. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 9:1–14, 2018.CrossRefGoogle Scholar
  42. 42.
    Huang, Y., L. Lin, A. Shanker, A. Malhotra, L. Yang, M. M. Dikov, and D. P. Carbone. Resuscitating cancer immunosurveillance: selective stimulation of DLL1-Notch signaling in T cells rescues T-cell function and inhibits tumor growth. Cancer Res. 71:6122–6132, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Huang, W., Z. Liu, G. Zhou, J. Ling, A. Tian, and N. Sun. Silencing Bag-1 gene via magnetic gold nanoparticle-delivered siRNA plasmid for colorectal cancer therapy in vivo and in vitro. Tumor Biol. 37:10365–10374, 2016.CrossRefGoogle Scholar
  44. 44.
    Hyman, J. M., A. J. Firestone, V. M. Heine, Y. Zhao, C. A. Ocasio, K. Han, M. Sun, P. G. Rack, S. Sinha, J. J. Wu, D. E. Solow-Cordero, J. Jiang, D. H. Rowitch, and J. K. Chen. Small-molecule inhibitors reveal multiple strategies for Hedgehog pathway blockade. PNAS 106:14132–14137, 2009.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Ichimura, N., N. Yamamoto, M. Nishikawa, H. Furue, Y. Kondo, and H. Hibi. Notch3 is frequently downregulated in oral cancer. J. Oral Maxillofac. Surg. Med. Pathol. 29:504–510, 2017.CrossRefGoogle Scholar
  46. 46.
    Ingallina, C., P. M. Costa, F. Ghirga, J. T. Wang, S. Berardozzi, N. Hodgins, P. Infante, S. M. Pollard, B. Botta, and K. T. Al-Jamal. Polymeric glabrescione B nanocapsules for passive targeting of Hedgehog-dependent tumor therapy in vitro. Nanomedicine 12:711–728, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ingham, P. W., and A. P. McMahon. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 15:3059–3087, 2001.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Jensen, S. A., E. S. Day, C. H. Ko, L. A. Hurley, J. P. Luciano, F. M. Kouri, T. J. Merkel, A. J. Luthi, P. C. Patel, J. I. Cutler, W. L. Daniel, A. W. Scott, M. W. Rotz, T. J. Meade, D. A. Giljohann, C. A. Mirkin, and A. H. Stegh. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med. 5:209ra152, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jiang, J., and C. Hui. Hedgehog signaling in development and cancer. Dev. Cell 15:801–812, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jiang, T., B. Zhang, L. Zhang, X. Wu, H. Li, S. Shen, Z. Luo, X. Liu, Y. Hu, Z. Pang, and X. Jiang. Biomimetic nanoparticles delivered hedgehog pathway inhibitor to modify tumour microenvironment and improved chemotherapy for pancreatic carcinoma. Artif. Cells Nanomed. Biotechnol. 46:S1088–S1101, 2018.CrossRefGoogle Scholar
  51. 51.
    Karamboulas, C., and L. Ailles. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim. Biophys. Acta 2481–2495:2013, 1830.Google Scholar
  52. 52.
    Kikuchi, A., H. Yamamoto, A. Sato, and S. Matsumoto. New insights into the mechanism of Wnt signaling pathway activation. International Review of Cell and Molecular Biology 2:21–71, 2011.CrossRefGoogle Scholar
  53. 53.
    Kim, M., and E. Jho. Cross-talk between Wnt/β-catenin and Hippo signaling pathways: a brief review. BMB Rep. 47:540–545, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kou, L., J. Sun, Y. Zhai, and Z. He. The endocytosis and intracellular fate of nanomedicines: implication for rational design. Asian J. Pharm. Sci. 8:1–10, 2013.CrossRefGoogle Scholar
  55. 55.
    Kwok, G. T., J. T. Zhao, J. Weiss, N. Mugridge, H. Brahmbhatt, J. A. MacDiarmid, B. G. Robinson, and S. B. Sidhu. Translational applications of microRNAs in cancer, and therapeutic implications. Non-coding RNA Res. 2:143–150, 2017.CrossRefGoogle Scholar
  56. 56.
    Lim, S. I., C. I. Lukianov, and J. A. Champion. Self-assembled protein nanocarrier for intracellular delivery of antibody. J. Control. Release 249:1–10, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Liu, Q., H. Zhu, K. Tiruthani, L. Shen, F. Chen, K. Gao, X. Zhang, L. Hou, D. Wang, R. Liu, and L. Huang. Nanoparticle-mediated trapping of Wnt family member 5A in tumor microenvironments enhances immunotherapy for B-Raf proto-oncogene mutant melanoma. ACS Nano 12:1250–1261, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lustig, B., B. Jerchow, M. Sachs, S. Weiler, T. Pietsch, U. Karsten, M. van de Wetering, H. Clevers, P. M. Schlag, W. Birchmeier, and J. Behrens. Negative feedback loop of Wnt signaling through upregulation of conductin/axin2 in colorectal and liver tumors. Mol. Cell. Biol. 22:1184–1193, 2002.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ma, C., L. Shi, Y. Huang, L. Shen, H. Peng, X. Zhu, and G. Zhou. Nanoparticle delivery of Wnt-1 siRNA enhances photodynamic therapy by inhibiting epithelial–mesenchymal transition for oral cancer. Biomater. Sci. 5:494–501, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Madan, B., M. J. Mcdonald, G. E. Foxa, C. R. Diegel, B. O. Williams, and D. M. Virshup. Bone loss from Wnt inhibition mitigated by concurrent alendronate therapy. Bone Res. 6:17, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mamaeva, V., R. Niemi, M. Beck, E. Özliseli, D. Desai, S. Landor, T. Gronroos, P. Kronqvist, I. K. N. Pettersen, E. McCormack, J. M. Rosenholm, M. Linden, and C. Sahlgren. Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors. Mol. Ther. 24:926–936, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Mamaeva, V., J. M. Rosenholm, L. T. Bate-Eya, L. Bergman, E. Peuhu, A. Duchanoy, L. E. Fortelius, S. Landor, D. M. Toivola, M. Lindén, and C. Sahlgren. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of notch signaling in cancer. Mol. Ther. 19:1538–1546, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    McDermott, S. P., and M. S. Wicha. Targeting breast cancer stem cells. Mol. Oncol. 4:404–419, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    McGowan, P. M., C. Simedrea, E. J. Ribot, P. J. Foster, D. Palmieri, P. S. Steeg, A. L. Allan, and A. F. Chambers. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol. Cancer Res. 9:834–845, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Melamed, J. R., S. A. Ioele, A. J. Hannum, V. M. Ullman, and E. S. Day. Polyethylenimine-spherical nucleic acid nanoparticles against gli1 reduce the chemoresistance and stemness of glioblastoma cells. Mol. Pharmacol. 15:5135–5145, 2018.CrossRefGoogle Scholar
  66. 66.
    Melamed, J. R., N. L. Kreuzberger, R. Goyal, and E. S. Day. Spherical nucleic acid architecture can improve the efficacy of polycation-mediated siRNA delivery. Mol. Ther. 12:207–219, 2018.Google Scholar
  67. 67.
    Melamed, J. R., J. T. Morgan, S. A. Ioele, J. P. Gleghorn, J. Sims-Mourtada, and E. S. Day. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide. Oncotarget 9:27000–27015, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Mendes, M., J. J. Sousa, A. Pais, and C. Vitorino. Targeted theranostic nanoparticles for brain tumor treatment. Pharmaceutics 10:1–47, 2018.CrossRefGoogle Scholar
  69. 69.
    Michaud, N. R., Y. Wang, K. A. McEachern, J. J. Jordan, A. M. Mazzola, A. Hernandez, S. Jalla, J. W. Chesebrough, M. J. Hynes, M. A. Belmonte, L. Wang, J. S. Kang, J. Jovanovic, N. Laing, D. W. Jenkins, E. Hurt, M. Liang, C. Frantz, R. E. Hollingsworth, D. M. Simeone, D. C. Blakey, and V. Bedian. Novel neutralizing Hedgehog antibody MEDI-5304 exhibits antitumor activity by inhibiting paracrine Hedgehog signaling. Mol. Cancer Ther. 13:386–398, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Mie, M., F. Takahashi, H. Funabashi, Y. Yanagida, M. Aizawa, and E. Kobatake. Intracellular delivery of antibodies using TAT fusion protein A. Biochem. Biophys. Res. Commun. 310:730–734, 2003.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Miller-Kleinhenz, J., X. Guo, W. Qian, H. Zhou, E. N. Bozeman, L. Zhu, X. Ji, Y. A. Wang, T. Styblo, R. O’Regan, H. Mao, and L. Yang. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials 152:47–62, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Morgan, K. M., B. S. Fischer, F. Y. Lee, J. J. Shah, J. R. Bertino, J. Rosenfeld, A. Singh, H. Khiabanian, and S. R. Pine. Gamma secretase inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Mol. Cancer Ther. 16:2759–2770, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Motawi, T. K., S. A. El-Maraghy, A. N. ElMeshad, O. M. Nady, and O. A. Hammam. Cromolyn chitosan nanoparticles as a novel protective approach for colorectal cancer. Chem. Biol. Interact. 275:1–12, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Munsell, E. V., N. L. Ross, and M. O. Sullivan. Journey to the center of the cell: current nanocarrier design strategies targeting biopharmaceuticals to the cytoplasm and nucleus. Curr. Pharm. Des. 22:1227–1244, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nakamura, M., M. Kubo, K. Yanai, Y. Mikami, M. Ikebe, S. Nagai, K. Yamaguchi, M. Tanaka, and M. Katano. Anti-patched-1 antibodies suppress Hedgehog signaling pathway and pancreatic cancer proliferation. Anticancer Res. 27:3743–3748, 2007.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Nayak, A., S. R. Satapathy, D. Das, S. Siddharth, N. Tripathi, P. V. Bharatam, and C. N. Kundu. Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: role of GLI-1. Sci. Rep. 2016.  https://doi.org/10.1038/srep20600.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nayak, A., S. Siddharth, S. Das, D. Nayak, C. Sethy, and C. N. Kundu. Nanoquinacrine caused apoptosis in oral cancer stem cells by disrupting the interaction between GLI1 and β catenin through activation of GSK3β. Toxicol. Appl. Pharmacol. 330:53–64, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Nieuwenhuis, E., and C. Hui. Hedgehog signaling and congenital malformations. Clin. Genet. 67:193–208, 2004.CrossRefGoogle Scholar
  79. 79.
    Nusslein-Volhard, C., and E. Wieschaus. Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801, 1980.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    O’Toole, S. A., D. A. Machalek, R. F. Shearer, E. K. A. Millar, R. Nair, P. Schofield, D. McLeod, C. L. Cooper, C. M. McNeil, A. McFarland, A. Nguyen, C. J. Ormandy, M. R. Qiu, B. Rabinovich, L. G. Martelotto, D. Vu, G. E. Hannigan, E. A. Musgrove, D. Christ, R. L. Sutherland, D. N. Watkins, and A. Swarbrick. Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res. 71:4002–4014, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Opačak-Bernardi, T., J. S. Ryu, and D. Raucher. Effects of cell penetrating Notch inhibitory peptide conjugated to elastin-like polypeptide on glioblastoma cells. J. Drug Target. 25:523–531, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pannuti, A., K. Foreman, P. Rizzo, C. Osipo, T. Golde, B. Osborne, and L. Miele. Targeting Notch to target cancer stem cells. Clin. Cancer Res. 16:3141–3153, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Peer, E., S. Tesanovic, and F. Aberger. Next-generation Hedgehog/GLI pathway inhibitors for cancer therapy. Cancers (Basel). 11:1–20, 2019.CrossRefGoogle Scholar
  84. 84.
    Pelkmans, L., J. Kartenbeck, and A. Helenius. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat. Cell Biol. 3:473–484, 2001.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Ran, Y., F. Hossain, A. Pannuti, C. B. Lessard, G. Z. Ladd, J. I. Jung, L. M. Minter, B. A. Osborne, L. Miele, and T. E. Golde. Gamma-Secretase inhibitors in cancer clinical trials are pharmacologically and functionally distinct. EMBO Mol. Med. 9:950–966, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Ray, P., M. Confeld, P. Borowicz, T. Wang, S. Mallik, and M. Quadir. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf. B 174:126–135, 2019.CrossRefGoogle Scholar
  87. 87.
    Rejman, J., A. Bragonzi, and M. Conese. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 12:468–474, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Riley, R. S., and E. S. Day. Frizzled7 Antibody-functionalized nanoshells enable multivalent binding for wnt signaling inhibition in triple negative breast cancer cells. Small 13:1700544, 2017.CrossRefGoogle Scholar
  89. 89.
    Ring, A., Y.-M. Kim, and M. Kahn. Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Rev. Rep. 10:512–525, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Ristorcelli, E., E. Beraud, S. Mathieu, D. Lombardo, and A. Verine. Essential role of Notch signaling in apoptosis of human pancreatic tumoral cells mediated by exosomal nanoparticles. Int. J. Cancer 125:1016–1026, 2009.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Rubin, L. L., and F. J. de Sauvage. Targeting the Hedgehog pathway in cancer. Nature 5:1026–1033, 2006.Google Scholar
  92. 92.
    Sancho, R., C. A. Cremona, and A. Behrens. Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep. 16:571–581, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Sanna, V., N. Pala, and M. Sechi. Targeted therapy using nanotechnology: focus on cancer. Int. J. Nanomed. 9:467–483, 2014.Google Scholar
  94. 94.
    Sato, C., G. Zhao, and M. X. G. Ilagen. An overview of Notch signaling in adult tissue renewal and maintenance. Curr. Alzheimer Res. 9:227–240, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Scott, A. M., J. D. Wolchok, and L. J. Old. Antibody therapy of cancer. Nat. Rev. Cancer 12:278–287, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Shah, M. Y., A. Ferrajoli, A. K. Sood, G. Lopez-Berestein, and G. A. Calin. microRNA therapeutics in cancer—an emerging concept. EBioMedicine 12:34–42, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Sharma, A., A. N. Paranjape, A. Rangarajan, and R. R. Dighe. A monoclonal antibody against human Notch1 ligand-binding domain depletes subpopulation of putative breast cancer stem-like cells. Mol. Cancer Ther. 11:77–87, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Slastnikova, T. A., A. V. Ulasov, A. A. Rosenkranz, and A. S. Sobolev. Targeted intracellular delivery of antibodies: the state of the art. Front. Pharmacol. 9:1–21, 2018.CrossRefGoogle Scholar
  99. 99.
    Speiser, J., K. Foreman, E. Drinka, C. Godellas, C. Perez, A. Salhadar, C. Ersahin, and P. Rajan. Notch-1 and Notch-4 biomarker expression in triple-negative breast cancer. Int. J. Surg. Pathol. 20:139–145, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Steg, A. D., A. A. Katre, B. Goodman, H.-D. Han, A. M. Nick, R. L. Stone, R. L. Coleman, R. D. Alvarez, G. Lopez-Berestein, A. K. Sood, and C. N. Landen. Targeting the Notch ligand Jagged1 in both tumor cells and stroma in ovarian cancer. Clin. Cancer Res. 17:5674–5686, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Stylianou, S., R. B. Clarke, and K. Brennan. Aberrant activation of Notch signaling in human breast cancer. Cancer Res. 66:1517–1526, 2006.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Sykes, E. A., J. Chen, G. Zheng, and W. C. W. Chan. Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8:5696–5706, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Taipale, J., and P. A. Beachy. The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354, 2001.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Taipale, J., J. K. Chen, M. K. Cooper, B. Wang, R. K. Mann, L. Milenkovic, M. P. Scott, and P. A. Beachy. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406:1005–1009, 2000.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Takebe, N., P. J. Harris, R. Q. Warren, and S. P. Ivy. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat. Rev. Clin. Oncol. 8:97–106, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Takebe, N., L. Miele, P. J. Harris, W. Jeong, H. Bando, M. Kahn, S. X. Yang, and S. P. Ivy. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat. Rev. Clin. Oncol. 12:445–464, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Tangudu, N. K., V. K. Verma, T. D. Clemons, S. S. Beevi, T. Hay, G. Mahidhara, M. Raja, R. A. Nair, L. E. Alexander, A. B. Patel, J. Jose, N. M. Smith, B. Zdyrko, A. Bourdoncle, I. Luzinov, K. S. Iyer, A. R. Clarke, and L. D. Kumar. RNA interference using c-Myc—conjugated nanoparticles suppresses breast and colorectal cancer models. Mol. Cancer Ther. 14:1259–1270, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tree, D. R. P., J. M. Shulman, R. Rousset, M. P. Scott, D. Gubb, and J. D. Axelrod. Prickle mediates feedback amplification to generate asymmetric planar cell polarity signaling. Cell 109:371–381, 2002.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Tsukamoto, A. S., R. Grosschedl, R. C. Guzman, T. Parslow, and H. E. Varmus. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55:619–625, 1988.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Vaidya, A. M., Z. Sun, N. Ayat, A. Schilb, X. Liu, H. Jiang, D. Sun, J. Scheidt, V. Qian, S. He, H. Gilmore, W. P. Schiemann, and Z.-R. Lu. Systemic delivery of tumor-targeting siRNA nanoparticles against an oncogenic LncRNA facilitates effective triple-negative breast cancer therapy. Bioconjug. Chem. 30:907–919, 2019.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Valcourt, D. M., J. Harris, R. S. Riley, M. Dang, J. Wang, and E. S. Day. Advances in targeted nanotherapeutics: from bioconjugation to biomimicry. Nano Res. 3:1–18, 2018.Google Scholar
  112. 112.
    Veeck, J., D. Niederacher, H. An, E. Klopocki, F. Wiesmann, B. Betz, O. Galm, O. Camara, M. Dürst, G. Kristiansen, C. Huszka, R. Knüchel, and E. Dahl. Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488, 2006.CrossRefGoogle Scholar
  113. 113.
    Verma, R. K., W. Yu, A. Shrivastava, S. Shankar, and R. K. Srivastava. α-Mangostin-encapsulated PLGA nanoparticles inhibit pancreatic carcinogenesis by targeting cancer stem cells in human, and transgenic (KrasG12D, and KrasG12D/tp53R270H) mice. Sci. Rep. 2016.  https://doi.org/10.1038/srep32743.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Verma, R. K., W. Yu, S. P. Singh, S. Shankar, and R. K. Srivastava. Anthothecol-encapsulated PLGA nanoparticles inhibit pancreatic cancer stem cell growth by modulating sonic hedgehog pathway. Nanomedicine 11:2061–2070, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Wan, X., C. Liu, Y. Lin, J. Fu, G. Lu, and Z. Lu. pH sensitive peptide functionalized nanoparticles for co-delivery of erlotinib and DAPT to restrict the progress of triple negative breast cancer. Drug Deliv. 26:470–480, 2019.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Wang, L., X. Liu, Q. Zhou, M. Sui, Z. Lu, Z. Zhou, J. Tang, Y. Miao, M. Zheng, W. Wang, and Y. Shen. Terminating the criminal collaboration in pancreatic cancer: nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials 144:105–118, 2017.CrossRefGoogle Scholar
  117. 117.
    Wen, X.-F., M. Chen, Y. Wu, M.-N. Chen, A. Glogowska, T. Klonisch, and G.-J. Zhang. Inhibitor of DNA binding 2 inhibits epithelial-mesenchymal transition via up-regulation of Notch3 in breast cancer. Transl. Oncol. 11:1259–1270, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Wilhelm, S., A. J. Tavares, Q. Dai, S. Ohta, J. Audet, H. F. Dvorak, and W. C. W. Chan. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1:16014, 2016.CrossRefGoogle Scholar
  119. 119.
    Wu, Y., C. Cain-Hom, L. Choy, T. J. Hagenbeek, G. P. de Leon, Y. Chen, D. Finkle, R. Venook, X. Wu, J. Ridgway, D. Schahin-Reed, G. J. Dow, A. Shelton, S. Stawicki, R. J. Watts, J. Zhang, R. Choy, P. Howard, L. Kadyk, M. Yan, J. Zha, C. A. Callahan, S. G. Hymowitz, and C. W. Siebel. Therapeutic antibody targeting of individual Notch receptors. Nat. Lett. 464:1052–1057, 2010.CrossRefGoogle Scholar
  120. 120.
    Wu, X., H. Chen, and X. Wang. Can lung cancer stem cells be targeted for therapies? Cancer Treat. Rev. 38:580–588, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Wu, F., Y. Zhang, B. Sun, A. P. McMahon, and Y. Wang. Hedgehog signaling: from basic biology to cancer therapy. Cell Chem. Biol. 24:252–280, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Xu, Y., V. Chenna, C. Hu, H.-X. Sun, M. Khan, H. Bai, X.-R. Yang, Q.-F. Zhu, Y.-F. Sun, A. Maitra, J. Fan, and R. A. Anders. Polymeric nanoparticle encapsulated Hedgehog pathway inhibitor HPI-1 (“NanoHHI”) inhibits systemic metastases in an orthotopic model of human hepatocellular carcinoma. Clin. Cancer Res. 18:1291–1302, 2012.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Yang, H., Y. Li, T. Li, M. Xu, Y. Chen, C. Wu, X. Dang, and Y. Liu. Multifunctional core/shell nanoparticles cross-linked polyetherimide-folic acid as efficient Notch-1 siRNA carrier for targeted killing of breast cancer. Sci. Rep. 4:1–10, 2014.Google Scholar
  124. 124.
    Yang, R., G. Mondal, D. Wen, and R. I. Mahato. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. Nanomedicine 13:391–401, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Yauch, R. L., S. E. Gould, S. J. Scales, T. Tang, H. Tian, C. P. Ahn, D. Marshall, L. Fu, T. Januario, D. Kallop, M. Nannini-Pepe, K. Kotkow, J. C. Marsters, Jr, L. L. Rubin, and F. J. de Sauvage. A paracrine requirement for hedgehog signalling in cancer. Nat. Lett. 455:406–411, 2008.CrossRefGoogle Scholar
  126. 126.
    You, J., J. Zhao, X. Wen, C. Wu, Q. Huang, F. Guan, R. Wu, D. Liang, and C. Li. Chemoradiation therapy using cyclopamine-loaded liquid-lipid nanoparticles and lutetium-177-labeled core-crosslinked polymeric micelles. J. Control. Release 202:40–48, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Yuan, X., H. Wu, H. Xu, H. Xiong, Q. Chu, S. Yu, G. S. Wu, and K. Wu. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 369:20–27, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Yue, Z.-S., B. Ruan, J.-L. Duan, H. Han, and L. Wang. The role of the Notch signaling pathway in liver injury and repair. J. Bio-X Res. 1:95–104, 2018.Google Scholar
  129. 129.
    Zhan, T., N. Rindtorff, and M. Boutros. Wnt signaling in cancer. Oncogene 36:1461, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Zhao, J., H. Wang, C.-H. Hsiao, D. S.-L. Chow, E. J. Koay, Y. Kang, X. Wen, Q. Huang, Y. Ma, J. A. Bankson, S. E. Ullrich, W. Overwijk, A. Maitra, D. Piwnica-Worms, J. B. Fleming, and C. Li. Simultaneous inhibition of hedgehog signaling and tumor proliferation remodels stroma and enhances pancreatic cancer therapy. Biomaterials 159:215–228, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zhou, P., Y. Cao, X. Liu, T. Yu, Q. Xu, C. You, X. Gao, and Y. Wei. Delivery siRNA with a novel gene vector for glioma therapy by targeting Gli1. Int. J. Nanomed. 13:4781–4793, 2018.CrossRefGoogle Scholar
  132. 132.
    Zhou, B.-B. S., H. Zhang, M. Damelin, K. G. Geles, J. C. Grindley, and P. B. Dirks. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature 8:806–823, 2009.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of DelawareNewarkUSA
  2. 2.Department of Materials Science & EngineeringUniversity of DelawareNewarkUSA
  3. 3.Helen F. Graham Cancer Center & Research InstituteNewarkUSA

Personalised recommendations