Advertisement

Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold

  • Federica IberiteEmail author
  • Irini Gerges
  • Lorenzo Vannozzi
  • Attilio Marino
  • Marco Piazzoni
  • Tommaso Santaniello
  • Cristina Lenardi
  • Leonardo Ricotti
Original Article
  • 5 Downloads

Abstract

Compared to two-dimensional cell cultures, three-dimensional ones potentially allow recreating natural tissue environments with higher accuracy. The three-dimensional approach is being investigated in the field of tissue engineering targeting the reconstruction of various tissues, among which skeletal muscle. Skeletal muscle is an electroactive tissue which strongly relies upon interactions with the extracellular matrix for internal organization and mechanical function. Studying the optimization of myogenesis in vitro implies focusing on appropriate biomimetic stimuli, as biochemical and electrical ones. Here we present a three-dimensional polyurethane-based soft porous scaffold (porosity ~ 86%) with a Young’s modulus in wet conditions close to the one of natural skeletal muscle tissue (~ 9 kPa). To study the effect of external stimuli on muscle cells, we functionalized the scaffold with extracellular matrix components (laminin and fibronectin) and observed an increase in myoblast proliferation over three days. Furthermore, the combination between laminin coating and electrical stimulation resulted in more spread and thicker myotubes compared to non-stimulated samples and samples receiving the single (non-combined) inputs. These results pave the way to the development of mature muscle tissue within three-dimensional soft scaffolds, through the combination of biochemical and electrical stimuli.

Keywords

Three-dimensional scaffold Biophysical stimulation Skeletal muscle Tissue engineering Polyurethane scaffold 

Abbreviations

3D

Three-dimensional

DMEM

Dulbecco’s Modified Eagle’s Medium

DMSO

Dimethylsulfoxide

ECM

Extracellular matrix

ES

Electrical stimulation

EtOH

Ethanol

FBS

Fetal bovine serum

FN

Fibronectin

HMDI

Hexamethylene diisocyanate

IQR

Interquartile range

LMN

Laminin

MDM

Myoblast differentiation medium

MGM

Myoblast growth medium

MSM

Myoblast seeding medium

PBS

Phosphate buffered saline

PEG6K

Polyethylene glycol 6000 g/mol

Pt

Platinum

PU

Polyurethane

SEM

Scanning electron microscopy

SM

Skeletal muscle

SMTE

Skeletal muscle tissue engineering

TRITC

Tetramethylrhodamine

Notes

Acknowledgments

The authors would like to thank Federica Elliot for English language editing and review.

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10439_2019_2397_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1619 kb)

References

  1. 1.
    Bian, W., and N. Bursac. Tissue engineering of functional skeletal muscle: challenges and recent advances. IEEE Eng. Med. Biol. Mag. 27:109–113, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Boonen, K. J. M., D. W. J. van der Schaft, F. P. T. Baaijens, and M. J. Post. Interaction between electrical stimulation, protein coating and matrix elasticity: a complex effect on muscle fibre maturation. J. Tissue Eng. Regen. Med. 5:60–68, 2011.PubMedCrossRefGoogle Scholar
  3. 3.
    Candiani, G., S. A. Riboldi, N. Sadr, S. Lorenzoni, P. Neuenschwander, F. M. Montevecchi, and S. Mantero. Cyclic mechanical stimulation favors myosin heavy chain accumulation in engineered skeletal muscle constructs. J. Appl. Biomater. Funct. Mater. 8:68–75, 2018.Google Scholar
  4. 4.
    Cerino, G., E. Gaudiello, T. Grussenmeyer, L. Melly, D. Massai, A. Banfi, I. Martin, F. Eckstein, M. Grapow, and A. Marsano. Three dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors. Biotechnol. Bioeng. 113:226–236, 2016.PubMedCrossRefGoogle Scholar
  5. 5.
    Chal, J., and O. Pourquié. Making muscle: skeletal myogenesis in vivo and in vitro. Development 144:2104–2122, 2017.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen, J., R. Dong, J. Ge, B. Guo, and P. X. Ma. Biocompatible, biodegradable, and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering. ACS Appl. Mater. Interfaces 7:28273–28285, 2015.PubMedCrossRefGoogle Scholar
  7. 7.
    Ciardelli, G., A. Rechichi, S. Sartori, M. D’Acunto, A. Caporale, E. Peggion, G. Vozzi, and P. Giusti. Bioactive polyurethanes in clinical applications. Polym. Adv. Technol. 17:786–789, 2006.CrossRefGoogle Scholar
  8. 8.
    Discher, D. E., P. Janmey, and Y.-L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143, 2005.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Duffy, R. M., Y. Sun, and A. W. Feinberg. Understanding the role of ECM protein composition and geometric micropatterning for engineering human skeletal muscle. Ann. Biomed. Eng. 44:2076–2089, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Engler, A. J., L. Bacakova, C. Newman, A. Hategan, M. A. Griffin, and D. E. Discher. Substrate compliance versus ligand density in cell on gel responses. Biophys. J. 86:617–628, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Engler, A. J., M. A. Griffin, S. Sen, C. G. Bönnemann, H. L. Sweeney, and D. E. Discher. Myotubes differentiate optimally on substrates with tissue-like stiffness. J. Cell Biol. 166:877–887, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Engler, A. J., L. Richert, J. Y. Wong, C. Picart, and D. E. Discher. Surface probe measurements of the elasticity of sectioned tissue, thin gels and polyelectrolyte multilayer films: correlations between substrate stiffness and cell adhesion. Surf. Sci. 570:142–154, 2004.CrossRefGoogle Scholar
  13. 13.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126:677–689, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ganji, Y., Q. Li, E. S. Quabius, M. Böttner, C. Selhuber-Unkel, and M. Kasra. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Mater. Sci. Eng. C 59:10–18, 2016.CrossRefGoogle Scholar
  15. 15.
    Garg, K., M. Marcinczyk, N. Ziemkiewicz, and K. Garg. Laminin enriched scaffolds for tissue engineering applications. Adv. Tissue Eng. Regen. Med. Open Access 2:194–200, 2017.Google Scholar
  16. 16.
    Gerges, I., M. Tamplenizza, F. Martello, C. Recordati, C. Martelli, L. Ottobrini, M. Tamplenizza, S. A. Guelcher, A. Tocchio, and C. Lenardi. Exploring the potential of polyurethane-based soft foam as cell-free scaffold for soft tissue regeneration. Acta Biomater. 73:141–153, 2018.PubMedCrossRefGoogle Scholar
  17. 17.
    Gillies, A. R., and R. L. Lieber. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331, 2011.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hiemer, B., M. Krogull, T. Bender, J. Ziebart, S. Krueger, R. Bader, and A. Jonitz-Heincke. Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia. Mol. Med. Rep. 18:2133–2141, 2018.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ikeda, K., A. Ito, M. Sato, Y. Kawabe, and M. Kamihira. Improved contractile force generation of tissue-engineered skeletal muscle constructs by IGF-I and Bcl-2 gene transfer with electrical pulse stimulation. Regen. Ther. 3:38–44, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ito, A., Y. Yamamoto, M. Sato, K. Ikeda, M. Yamamoto, H. Fujita, E. Nagamori, Y. Kawabe, and M. Kamihira. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation. Sci. Rep. 4:4781, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jana, S., S. K. L. Levengood, and M. Zhang. Anisotropic materials for skeletal-muscle-tissue engineering. Adv. Mater. 28:10588–10612, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32:1728–1743, 2004.PubMedCrossRefGoogle Scholar
  23. 23.
    Khodabukus, A., L. Madden, N. K. Prabhu, T. R. Koves, C. P. Jackman, D. M. Muoio, and N. Bursac. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. Biomaterials 198:259–269, 2019.PubMedCrossRefGoogle Scholar
  24. 24.
    Kleinman, H. K., D. Philp, and M. P. Hoffman. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 14:526–532, 2003.PubMedCrossRefGoogle Scholar
  25. 25.
    Koch, M. A., E. J. Vrij, E. Engel, J. A. Planell, and D. Lacroix. Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J. Biomed. Mater. Res. Part A 95A:1011–1018, 2010.CrossRefGoogle Scholar
  26. 26.
    Kostrominova, T. Y., and M. L. Tanzer. Temporal and spatial appearance of α-dystroglycan in differentiated mouse myoblasts in culture. J. Cell. Biochem. 58:527–534, 1995.PubMedCrossRefGoogle Scholar
  27. 27.
    Krueger, E., A. N. Chang, D. Brown, J. Eixenberger, R. Brown, S. Rastegar, K. M. Yocham, K. D. Cantley, and D. Estrada. Graphene foam as a three-dimensional platform for myotube growth. ACS Biomater. Sci. Eng. 2:1234–1241, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lan, M. A., C. A. Gersbach, K. E. Michael, B. G. Keselowsky, and A. J. García. Myoblast proliferation and differentiation on fibronectin-coated self assembled monolayers presenting different surface chemistries. Biomaterials 26:4523–4531, 2005.PubMedCrossRefGoogle Scholar
  29. 29.
    Levenberg, S., J. Rouwkema, M. Macdonald, E. S. Garfein, D. S. Kohane, D. C. Darland, R. Marini, C. A. Van Blitterswijk, R. C. Mulligan, P. A. D’Amore, and R. Langer. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23:879–884, 2005.PubMedCrossRefGoogle Scholar
  30. 30.
    Liao, I.-C., J. B. Liu, N. Bursac, and K. W. Leong. Effect of electromechanical stimulation on the maturation of myotubes on aligned electrospun fibers. Cell. Mol. Bioeng. 1:133, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Maidhof, R., A. Marsano, E. J. Lee, and G. Vunjak-Novakovic. Perfusion seeding of channeled elastomeric scaffolds with myocytes and endothelial cells for cardiac tissue engineering. Biotechnol. Prog. 26:565–572, 2010.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Ostrovidov, S., V. Hosseini, S. Ahadian, T. Fujie, S. P. Parthiban, M. Ramalingam, H. Bae, H. Kaji, and A. Khademhosseini. Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Eng. Part B 20:403–436, 2014.CrossRefGoogle Scholar
  33. 33.
    Park, H., R. Bhalla, R. Saigal, M. Radisic, N. Watson, R. Langer, and G. Vunjak-Novakovic. Effects of electrical stimulation in C2C12 muscle constructs. J. Tissue Eng. Regen. Med. 2:279–287, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Riboldi, S. A., N. Sadr, L. Pigini, P. Neuenschwander, M. Simonet, P. Mognol, M. Sampaolesi, G. Cossu, and S. Mantero. Skeletal myogenesis on highly orientated microfibrous polyesterurethane scaffolds. J. Biomed. Mater. Res. A 84:1094–1101, 2008.PubMedCrossRefGoogle Scholar
  35. 35.
    Ricotti, L., B. Trimmer, A. W. Feinberg, R. Raman, K. K. Parker, R. Bashir, M. Sitti, S. Martel, P. Dario, and A. Menciassi. Biohybrid actuators for robotics: a review of devices actuated by living cells. Sci. Robot. 2:eaaq0495, 2017.CrossRefGoogle Scholar
  36. 36.
    Ross, J. J., M. J. Duxson, and A. J. Harris. Neural determination of muscle fibre numbers in embryonic rat lumbrical muscles. Development 100:395–409, 1987.PubMedGoogle Scholar
  37. 37.
    Santamaría, V. A., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. G. Ribelles, M. Doblaré, G. G. Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non-Cryst. Solids 358:3141–3149, 2012.CrossRefGoogle Scholar
  38. 38.
    Siepe, M., M.-N. Giraud, E. Liljensten, U. Nydegger, P. Menasche, T. Carrel, and H. T. Tevaearai. Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artif. Organs 31:425–433, 2007.PubMedCrossRefGoogle Scholar
  39. 39.
    Sin, D., X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan, and T. Friis. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation. Mater. Sci. Eng. C 30:78–85, 2010.CrossRefGoogle Scholar
  40. 40.
    Song, B., Y. Gu, J. Pu, B. Reid, Z. Zhao, and M. Zhao. Application of direct current electric fields to cells and tissues in vitro and modulation of wound electric field in vivo. Nat. Protoc. 2:1479–1489, 2007.PubMedCrossRefGoogle Scholar
  41. 41.
    Tandon, N., A. Marsano, R. Maidhof, L. Wan, H. Park, and G. Vunjak-Novakovic. Optimization of electrical stimulation parameters for cardiac tissue engineering. J. Tissue Eng. Regen. Med. 5:e115–e125, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Tuomisto, H. L., and M. J. Teixeira de Mattos. Environmental impacts of cultured meat production. Environ. Sci. Technol. 45:6117–6123, 2011.PubMedCrossRefGoogle Scholar
  43. 43.
    Vandenburgh, H. High-content drug screening with engineered musculoskeletal tissues. Tissue Eng. Part B 16:55–64, 2010.CrossRefGoogle Scholar
  44. 44.
    Vannozzi, L., L. Ricotti, T. Santaniello, T. Terencio, R. Oropesa-Nunez, C. Canale, F. Borghi, A. Menciassi, C. Lenardi, and I. Gerges. 3D porous polyurethanes featured by different mechanical properties: characterization and interaction with skeletal muscle cells. J. Mech. Behav. Biomed. Mater. 75:147–159, 2017.PubMedCrossRefGoogle Scholar
  45. 45.
    Varley, M. C., S. Neelakantan, T. W. Clyne, J. Dean, R. A. Brooks, and A. E. Markaki. Cell structure, stiffness and permeability of freeze-dried collagen scaffolds in dry and hydrated states. Acta Biomater. 33:166–175, 2016.PubMedCrossRefGoogle Scholar
  46. 46.
    Wang, L., Y. Wu, B. Guo, and P. X. Ma. Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation. ACS Nano 9:9167–9179, 2015.PubMedCrossRefGoogle Scholar
  47. 47.
    Yuvarani, I., S. Senthilkumar, J. Venkatesan, S.-K. Kim, A. A. Al-Kheraif, S. Anil, and P. N. Sudha. Chitosan modified alginate-polyurethane scaffold for skeletal muscle tissue engineering. J. Biomater. Tissue Eng. 5:665–672, 2015.CrossRefGoogle Scholar
  48. 48.
    Zdrahala, R. J., and I. J. Zdrahala. Biomedical applications of polyurethanes: a review of past promises, present pealities, and a vibrant future. J. Biomater. Appl. 14:67–90, 1999.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang, M., and B. Guo. Electroactive 3D scaffolds based on silk fibroin and water-borne polyaniline for skeletal muscle tissue engineering. Macromol. Biosci. 17:1700147, 2017.CrossRefGoogle Scholar
  50. 50.
    Zhao, X., R. Dong, B. Guo, and P. X. Ma. Dopamine-incorporated dual bioactive electroactive shape memory polyurethane elastomers with physiological shape recovery temperature, high stretchability, and enhanced C2C12 myogenic differentiation. ACS Appl. Mater. Interfaces 9:29595–29611, 2017.PubMedCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.The BioRobotics InstituteScuola Superiore Sant’AnnaPisaItaly
  2. 2.Tensive S.r.lMilanItaly
  3. 3.Smart Bio-InterfacesIstituto Italiano di TecnologiaPontedera, PisaItaly
  4. 4.Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Department of PhysicsUniversità degli Studi di MilanoMilanItaly
  5. 5.Department of Excellence in Robotics & AIScuola Superiore Sant’AnnaPisaItaly

Personalised recommendations