Reporter Scaffolds for Clinically Relevant Cell Transplantation Studies

  • Morgan Bolger
  • Rebecca Groynom
  • Kath Bogie
  • Erin LavikEmail author
Biomaterials - Engineering Cell Behavior


There are a number of cell therapies that are either in clinical trials or moving toward clinical trials, particularly for diseases of the retina. One of the challenges with cell therapies is tracking the status of cells over time. Genetic manipulation can facilitate this, but it can limit the clinical application of the cells. There are a host of fluorophores that have been developed to assess the status of cells, but these molecules tend to be cleared rapidly from cells. There are preclinical strategies that use degradable scaffolds, and we hypothesized that these scaffolds could be used to track the state of cells during preclinical studies. In this work, we explored whether fluorophores could be delivered from simple scaffolds fabricated under extremely harsh conditions, be active upon release, and report on the cells growing on the scaffolds over time. We encapsulated CellROX® Green Reagent, and pHrodo™ Red AM in poly(lactic-co-glycolic acid) (PLGA) scaffolds, showed that they could be delivered over weeks and were still active upon release and taken up by cells. These experiments provide the foundation for using scaffolds to deliver molecules to report on cells.


Polymer Retina Age related macular degeneration AMD Cellular transplantation Tissue engineering Scaffold Polyester Drug delivery 



This work was supported by a grant from the Steven J. Ryan Initiative for Macular Research and NIH Grant 1R56NS100732-01. Dr. Lavik is an inventor on intellectual property that includes the potential for incorporation of reporter molecules.


  1. 1.
    Aziz, M., W. L. Yang, and P. Wang. Measurement of phagocytic engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester. In: Current protocols in immunology Chapter 14:Unit 14.31, edited by Z. Chen. New York: Wiley, 2013.Google Scholar
  2. 2.
    Bharti, K. Patching the retina with stem cells. Nat. Biotechnol. 36:311–313, 2018.CrossRefGoogle Scholar
  3. 3.
    Bourges, J. L., S. E. Gautier, F. Delie, R. A. Bejjani, J. C. Jeanny, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest. Ophthalmol. Vis. Sci. 44:3562–3569, 2003.CrossRefGoogle Scholar
  4. 4.
    Bramley, T., P. Peeples, J. G. Walt, M. Juhasz, and J. E. Hansen. Impact of vision loss on costs and outcomes in medicare beneficiaries with glaucoma. Arch. Ophthalmol. 126:849–856, 2008.CrossRefGoogle Scholar
  5. 5.
    Carr, A. J., M. J. Smart, C. M. Ramsden, M. B. Powner, L. da Cruz, and P. J. Coffey. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci. 36:385–395, 2013.CrossRefGoogle Scholar
  6. 6.
    Chen, Z., and Y. A. Zhang. Cell therapy for macular degeneration–first phase I/II pluripotent stem cell-based clinical trial shows promise. Sci. China Life Sci. 58:119–120, 2015.CrossRefGoogle Scholar
  7. 7.
    da Cruz, L., K. Fynes, O. Georgiadis, J. Kerby, Y. H. Luo, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat. Biotechnol. 36:328–337, 2018.CrossRefGoogle Scholar
  8. 8.
    Dai, X., G. Hong, T. Gao, and C. M. Lieber. Mesh nanoelectronics: seamless integration of electronics with tissues. Acc. Chem. Res. 51:309–318, 2018.CrossRefGoogle Scholar
  9. 9.
    Groynom, R., E. Shoffstall, L. S. Wu, R. H. Kramer, and E. B. Lavik. Controlled release of photoswitch drugs by degradable polymer microspheres. J. Drug Target 23:710–715, 2015.CrossRefGoogle Scholar
  10. 10.
    Hafeli, U. O., J. S. Riffle, L. Harris-Shekhawat, A. Carmichael-Baranauskas, F. Mark, et al. Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 6:1417–1428, 2009.CrossRefGoogle Scholar
  11. 11.
    Hoekstra, M. E., F. E. Dijkgraaf, T. N. Schumacher, and J. C. Rohr. Assessing T lymphocyte function and differentiation by genetically encoded reporter systems. Trends Immunol. 36:392–400, 2015.CrossRefGoogle Scholar
  12. 12.
    Hu, X. B., Y. L. Liu, W. J. Wang, H. W. Zhang, Y. Qin, et al. Biomimetic graphene-based 3D scaffold for long-term cell culture and real-time electrochemical monitoring. Anal. Chem. 90:1136–1141, 2018.CrossRefGoogle Scholar
  13. 13.
    Kador, K. E., and J. L. Goldberg. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev. Ophthalmol. 7:459–470, 2012.CrossRefGoogle Scholar
  14. 14.
    Kador, K. E., R. B. Montero, P. Venugopalan, J. Hertz, A. N. Zindell, et al. Tissue engineering the retinal ganglion cell nerve fiber layer. Biomaterials 34:4242–4250, 2013.CrossRefGoogle Scholar
  15. 15.
    Kapellos, T. S., L. Taylor, H. Lee, S. A. Cowley, W. S. James, et al. A novel real time imaging platform to quantify macrophage phagocytosis. Biochem. Pharmacol. 116:107–119, 2016.CrossRefGoogle Scholar
  16. 16.
    Khoh-Reiter, S., S. A. Sokolowski, B. Jessen, M. Evans, D. Dalvie, and S. Lu. Contribution of membrane trafficking perturbation to retinal toxicity. Toxicol. Sci. 145:383–395, 2015.CrossRefGoogle Scholar
  17. 17.
    Kim, Y. M., S. J. Kim, R. Tatsunami, H. Yamamura, T. Fukai, and M. Ushio-Fukai. ROS-induced ROS release orchestrated by Nox4, Nox2, and mitochondria in VEGF signaling and angiogenesis. Am. J. Physiol. Cell Physiol. 312:C749–C764, 2017.CrossRefGoogle Scholar
  18. 18.
    Lavik, E., M. H. Kuehn, A. J. Shoffstall, K. Atkins, A. V. Dumitrescu, and Y. H. Kwon. Sustained delivery of timolol maleate for over 90 days by subconjunctival injection. J. Ocul. Pharmacol. Ther. 32:642–649, 2016.CrossRefGoogle Scholar
  19. 19.
    Liu, Y., S. J. Chen, S. Y. Li, L. H. Qu, X. H. Meng, et al. Long-term safety of human retinal progenitor cell transplantation in retinitis pigmentosa patients. Stem Cell Res. Ther. 8:209, 2017.CrossRefGoogle Scholar
  20. 20.
    Liu, Y., and W. Deng. Reverse engineering human neurodegenerative disease using pluripotent stem cell technology. Brain Res. 1638:30–41, 2016.CrossRefGoogle Scholar
  21. 21.
    Madri, J., and S. Williams. Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol. 97:153–165, 1983.CrossRefGoogle Scholar
  22. 22.
    Mazumder, M. A., S. D. Fitzpatrick, B. Muirhead, and H. Sheardown. Cell-adhesive thermogelling PNIPAAm/hyaluronic acid cell delivery hydrogels for potential application as minimally invasive retinal therapeutics. J. Biomed. Mater. Res. A 100:1877–1887, 2012.CrossRefGoogle Scholar
  23. 23.
    Sharma, R., V. Khristov, A. Rising, B. S. Jha, R. Dejene, et al. Clinical-grade stem cell-derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med 11:5580, 2019.CrossRefGoogle Scholar
  24. 24.
    Sturesson, C., and J. Carlfors. Incorporation of protein in PLG-microspheres with retention of bioactivity. J. Control Release 67:171–178, 2000.CrossRefGoogle Scholar
  25. 25.
    Tan, Y. S. E., P. J. Shi, C. J. Choo, A. Laude, and W. Y. Yeong. Tissue engineering of retina and Bruch’s membrane: a review of cells, materials and processes. Br. J. Ophthalmol. 102:1182–1187, 2018.CrossRefGoogle Scholar
  26. 26.
    Tang, Z., Y. Zhang, Y. Wang, D. Zhang, B. Shen, et al. Progress of stem/progenitor cell-based therapy for retinal degeneration. J. Transl. Med. 15:99, 2017.CrossRefGoogle Scholar
  27. 27.
    Tochitsky, I., J. Trautman, N. Gallerani, J. G. Malis, and R. H. Kramer. Restoring visual function to the blind retina with a potent, safe and long-lasting photoswitch. Sci. Rep. 7:45487, 2017.CrossRefGoogle Scholar
  28. 28.
    Treharne, A. J., M. C. Grossel, A. J. Lotery, and H. A. Thomson. The chemistry of retinal transplantation: the influence of polymer scaffold properties on retinal cell adhesion and control. Br. J. Ophthalmol. 95:768–773, 2011.CrossRefGoogle Scholar
  29. 29.
    Ueda, T., T. Tamura, and I. Hamachi. In situ construction of protein-based semisynthetic biosensors. ACS Sens. 3:527–539, 2018.CrossRefGoogle Scholar
  30. 30.
    Wang, Y., Q. S. Zang, Z. Liu, Q. Wu, D. Maass, et al. Regulation of VEGF-induced endothelial cell migration by mitochondrial reactive oxygen species. Am. J. Physiol. Cell Physiol. 301:C695–C704, 2011.CrossRefGoogle Scholar
  31. 31.
    Weber, D., B. Torger, K. Richter, M. Nessling, F. Momburg, et al. Interaction of poly(l-lysine)/polysaccharide complex nanoparticles with human vascular endothelial cells. Nanomaterials (Basel, Switzerland) 8:358, 2018.CrossRefGoogle Scholar
  32. 32.
    Wong, W. L., X. Su, X. Li, C. M. Cheung, R. Klein, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet 2:e106–e116, 2014.PubMedGoogle Scholar
  33. 33.
    Worthington, K. S., L. A. Wiley, E. E. Kaalberg, M. M. Collins, R. F. Mullins, et al. Two-photon polymerization for production of human iPSC-derived retinal cell grafts. Acta Biomater. 55:385–395, 2017.CrossRefGoogle Scholar
  34. 34.
    Yokoyama, C., Y. Sueyoshi, M. Ema, Y. Mori, K. Takaishi, and H. Hisatomi. Induction of oxidative stress by anticancer drugs in the presence and absence of cells. Oncology letters 14:6066–6070, 2017.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Zarbin, M. Cell-based therapy for degenerative retinal disease. Trends Mol. Med. 22:115–134, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.University of MichiganAnn ArborUSA
  2. 2.Case Western Reserve UniversityClevelandUSA
  3. 3.Louis Stokes Cleveland VAClevelandUSA
  4. 4.University of Maryland, Baltimore CountyBaltimoreUSA

Personalised recommendations