Patient-Specific Monitoring and Trend Analysis of Model-Based Markers of Fluid Responsiveness in Sepsis: A Proof-of-Concept Animal Study
- 44 Downloads
Abstract
Total stressed blood volume (\(SBV_{\text{T}}\)) and arterial elastance (\(E_{\text{a}}\)) are two potentially important, clinically applicable metrics for guiding treatment in patients with altered hemodynamic states. Defined as the total pressure generating blood in the circulation, \(SBV_{\text{T}}\) is a potential direct measurement of tissue perfusion, a critical component in treatment of sepsis. \(E_{\text{a}}\) is closely related to arterial tone thus provides insight into cardiac efficiency. However, it is not clinically feasible or ethical to measure \(SBV_{\text{T}}\) in patients, so a three chambered cardiovascular system model using measured left ventricle pressure and volume, aortic pressure and central venous pressure is implemented to identify \(SBV_{\text{T}}\) and \(E_{\text{a}}\) from clinical data. \(SBV_{\text{T}}\) and \(E_{\text{a}}\) are identified from clinical data from six (6) pigs, who have undergone clinical procedures aimed at simulating septic shock and subsequent treatment, to identify clinically relevant changes. A novel, validated trend analysis method is used to adjudge clinically significant changes in state in the real-time \(E_{\text{a}}\) and \(SBV_{\text{T}}\) traces. Results matched hypothesised increases in \(SBV_{\text{T}}\) during fluid therapy, with a mean change of + 21% during initial therapy, and hypothesised decreases during endotoxin induced sepsis, with a mean change of − 29%. \(E_{\text{a}}\) displayed the hypothesised reciprocal behaviour with a mean changes of − 12 and + 30% during initial therapy and endotoxin induced sepsis, respectively. The overall results validate the efficacy of \(SBV_{\text{T}}\) in tracking changes in hemodynamic state in septic shock and fluid therapy.
Keywords
Stressed blood volume Arterial elastance Cardiovascular Fluid therapyNotes
References
- 1.Bagshaw, S. M., P. D. Brophy, D. Cruz, and C. Ronco. Fluid balance as a biomarker: impact of fluid overload on outcome in critically ill patients with acute kidney injury. Crit. care 12(4):169, 2008. https://doi.org/10.1186/cc6948.CrossRefPubMedPubMedCentralGoogle Scholar
- 2.Byrne, L., and F. Haren. Fluid resuscitation in human sepsis: time to rewrite history? Ann. Intensive Care 7(1):4, 2017. https://doi.org/10.1186/s13613-016-0231-8.CrossRefPubMedPubMedCentralGoogle Scholar
- 3.Cavallaro, F., C. Sandroni, and M. Antonelli. Functional hemodynamic monitoring and dynamic indices of fluid responsiveness. Miner. Anestesiol. 74(4):123–135, 2008.Google Scholar
- 4.Cecconi, M., D. De Backer, M. Antonelli, R. Beale, J. Bakker, C. Hofer, R. Jaeschke, A. Mebazaa, M. R. Pinsky, J. L. Teboul, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European society of intensive care medicine. Intensive Care Med. 40(12):1795–1815, 2014. https://doi.org/10.1007/s00134-014-3525-z.CrossRefPubMedPubMedCentralGoogle Scholar
- 5.Chase, J. G., A. J. Le Compte, J.-C. Preiser, G. M. Shaw, S. Penning, and T. Desaive. Physiological modeling, tight glycemic control, and the icu clinician: what are models and how can they affect practice? Ann. Intensive Care 1(1):11, 2011. https://doi.org/10.1186/2110-5820-1-11.CrossRefPubMedPubMedCentralGoogle Scholar
- 6.Davidson, S., C. Pretty, A. Pironet, T. Desaive, N. Janssen, B. Lambermont, P. Morimont, and J. G. Chase. Minimally invasive estimation of ventricular dead space volume through use of frank-starling curves. PLoS ONE 12(4):e0176302, 2017. https://doi.org/10.1371/journal.pone.0176302.CrossRefPubMedPubMedCentralGoogle Scholar
- 7.Davidson, S., C. Pretty, A. Pironet, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Minimally invasive, patient specific, beat-by-beat estimation of left ventricular time varying elastance. BioMed. Eng. Online 16 (1):42, 2017. ISSN 1475-925X. https://doi.org/10.1186/s12938-017-0338-7.CrossRefPubMedPubMedCentralGoogle Scholar
- 8.Davidson, S. M., D. O. Kannangara, C. G. Pretty, S. Kamoi, T. Desaive, and J. G. Chase. A novel approach for deriving a patient specific beat-to-beat estimate of the cardiac driver function. IFAC Pap. Online 48(20):348–353, 2015. https://doi.org/10.1016/j.ifacol.2015.10.164.CrossRefGoogle Scholar
- 9.Davidson, A. M., C. Pretty, S. Kamoi, J. Balmer, T. Desaive, and J. G. Chase. Real-time, minimally invasive, beat-to-beat estimation of end-systolic volume using a modified end-systolic pressure–volume relation. IFAC Pap. Online 50(1):5456–5461, 2017. https://doi.org/10.1016/j.ifacol.2017.08.1082.CrossRefGoogle Scholar
- 10.Dellinger, R. P., M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39(2):165–228, 2013. https://doi.org/10.1007/S00134-012-2769-8.CrossRefPubMedGoogle Scholar
- 11.Dickson, J. L., C. A. Gunn, and J. G. Chase. Humans are horribly variable. Int. J. Clin. Med. Imaging 1(2):1–1000142, 2014.Google Scholar
- 12.Dickson, J. L., C. A. Gunn, and J. G. Chase. Clinical & medical imaging. Int. J. 1(2):1000142, 2014.Google Scholar
- 13.Drosatos, K., A. Lymperopoulos, P. J. Kennel, N. Pollak, P. C. Schulze, and I. J. Goldberg. Pathophysiology of sepsis-related cardiac dysfunction: driven by inflammation, energy mismanagement, or both? Curr. Heart Fail. Rep. 12(2):130–140, 2015. https://doi.org/10.1007/s11897-014-0247-z.CrossRefPubMedPubMedCentralGoogle Scholar
- 14.Guarracino, F., R. Baldassarri, and M. R. Pinsky. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Crit. Care 17(2):213, 2013. https://doi.org/10.1186/cc12522.CrossRefPubMedPubMedCentralGoogle Scholar
- 15.Hariyanto, H., C. Q. Yahya, M. Widiastuti, P. Wibowo, and O. E. Tampubolon. Fluids and sepsis: changing the paradigm of fluid therapy: a case report. J Med. Case Rep. 11(1):30, 2017. https://doi.org/10.1186/s13256-016-1191-1.CrossRefPubMedPubMedCentralGoogle Scholar
- 16.Howell, M. D., and A. M. Davis. Management of sepsis and septic shock. Jama, 317(8):847–848, 2017. https://doi.org/10.1001/jama.2017.0131.CrossRefPubMedGoogle Scholar
- 17.Kamoi, S., C. Pretty, J. Balmer, S. Davidson, A. Pironet, T. Desaive, G. M. Shaw, and J. G. Chase. Improved pressure contour analysis for estimating cardiac stroke volume using pulse wave velocity measurement. Biomed. Eng. Online 16(1):51, 2017. https://doi.org/10.1186/s12938-017-0341-z.CrossRefPubMedPubMedCentralGoogle Scholar
- 18.Kelm, D. J., J. T. Perrin, R. Cartin-Ceba, O. Gajic, L. Schenck, and C. C. Kennedy. Fluid overload in patients with severe sepsis and septic shock treated with early-goal directed therapy is associated with increased acute need for fluid-related medical interventions and hospital death. Shock 43(1):68, 2015. https://doi.org/10.1001/jama.2016.0288.CrossRefPubMedPubMedCentralGoogle Scholar
- 19.Kumar, A., J. E. Parrillo, and A. Kumar, et al. Clinical review: myocardial depression in sepsis and septic shock. Crit. Care 6(6):500, 2002. https://doi.org/10.1186/cc1822.CrossRefPubMedPubMedCentralGoogle Scholar
- 20.Maas, J. J., M. R. Pinsky, L. P. Aarts, and J. R. Jansen. Bedside assessment of total systemic vascular compliance, stressed volume, and cardiac function curves in intensive care unit patients. Anesth. Analg. 115(4):880–887, 2012. https://doi.org/10.1213/ANE.0b013e31825fb01d.CrossRefPubMedGoogle Scholar
- 21.Magder, S., and B. De Varennes. Clinical death and the measurement of stressed vascular volume. Crit. Care Med. 26(6):1061–1064, 1998.CrossRefGoogle Scholar
- 22.Malbrain, M. L. N. G., N. Van Regenmortel, B. Saugel, B. De Tavernier, P.-J. Van Gaal, O. Joannes-Boyau, J.-L. Teboul, T. W. Rice, M. Mythen, and X. Monnet. Principles of fluid management and stewardship in septic shock: it is time to consider the four d’s and the four phases of fluid therapy. Ann. Intensive Care 8(1):66, 2018. https://doi.org/10.1186/s13613-018-0402-x.CrossRefPubMedPubMedCentralGoogle Scholar
- 23.Marik, P., and R. Bellomo. A rational approach to fluid therapy in sepsis. Br. J. Anaesth. 116(3):339–349, 2015. https://doi.org/10.1093/bja/aev349.CrossRefPubMedGoogle Scholar
- 24.Merx, M. W., and C. Weber. Sepsis and the heart. Circulation 116(7):793–802, 2007. https://doi.org/10.1161/circulationaha.106.678359.CrossRefPubMedGoogle Scholar
- 25.Monnet, X., P. E. Marik, and J.-L. Teboul. Prediction of fluid responsiveness: an update. Ann. Intensive Care 6(1):111, 2016. https://doi.org/10.1186/s13613-016-0216-7.CrossRefPubMedPubMedCentralGoogle Scholar
- 26.Mouncey, P. R., T. M. Osborn, G. S. Power, D. A. Harrison, M. Z. Sadique, R. D. Grieve, R. Jahan, S. E. Harvey, D. Bell, J. F. Bion, et al. Trial of early, goal-directed resuscitation for septic shock. N. Engl. J. Med. 372(14):1301–1311, 2015. https://doi.org/10.1056/NEJMoa1500896.CrossRefPubMedGoogle Scholar
- 27.Pironet, A., P. C. Dauby, J. G. Chase, S. Kamoi, N. Janssen, P. Morimont, B. Lambermont, and T. Desaive. Model-based stressed blood volume is an index of fluid responsiveness. IFAC Pap. Online 48(20):291–296, 2015. https://doi.org/10.1016/j.ifacol.2015.10.154.CrossRefGoogle Scholar
- 28.Pironet, A., P. C. Dauby, S. Paeme, S. Kosta, J. G. Chase, and T. Desaive. Simulation of left atrial function using a multi-scale model of the cardiovascular system. PLoS ONE 8(6):e65146, 2013. https://doi.org/10.1371/journal.pone.0065146.CrossRefPubMedPubMedCentralGoogle Scholar
- 29.Pironet, A., T. Desaive, J. G. Chase, P. Morimont, and P. C. Dauby. Model-based computation of total stressed blood volume from a preload reduction manoeuvre. Math. Biosci. 265:28–39, 2015. ISSN 0025-5564. https://doi.org/10.1016/j.mbs.2015.03.015.CrossRefGoogle Scholar
- 30.Pironet, A., T. Desaive, P. C. Dauby, J. G. Chase, and P. D. Docherty. Parameter identification methods in a model of the cardiovascular system. IFAC Pap. Online 48(20):366–371, 2015. https://doi.org/10.1016/j.ifacol.2015.10.167.CrossRefGoogle Scholar
- 31.Rothe, C. F. Mean circulatory filling pressure: its meaning and measurement. J. Appl. Physiol. 74(2):499–509, 1993. https://doi.org/10.1152/jappl.1993.74.2.499.CrossRefGoogle Scholar
- 32.Seymour, C. W., V. X. Liu, T. J. Iwashyna, F. M. Brunkhorst, T. D. Rea, A. Scherag, G. Rubenfeld, J. M. Kahn, M. Shankar-Hari, M. Singer, et al. Assessment of clinical criteria for sepsis: for the third international consensus definitions for sepsis and septic shock (sepsis-3). Jama 315(8):762–774, 2016. https://doi.org/10.1001/jama.2016.0288.CrossRefPubMedPubMedCentralGoogle Scholar
- 33.Silva, J. M., A. M. R. R. de Oliveira, F. A. M. Nogueira, P. M. M. Vianna, M. C. P. Filho, L. F. Dias, V. P. L. Maia, C. de Souza Neucamp, C. P. Amendola, M. J. C. Carmona, et al. The effect of excess fluid balance on the mortality rate of surgical patients: a multicenter prospective study. Crit. Care 17(6):R288, 2013. https://doi.org/10.1186/cc13151.CrossRefPubMedPubMedCentralGoogle Scholar
- 34.Smith, B. W., J. G. Chase, R. I. Nokes, G. M. Shaw, and T. David. Velocity profile method for time varying resistance in minimal cardiovascular system models. Phys. Med. Biol. 48(20):3375, 2003. https://doi.org/10.1088/0031-9155/48/20/008/meta.CrossRefPubMedGoogle Scholar
- 35.Starfinger, C., C. E. Hann, J. G. Chase, T. Desaive, A. Ghuysen, and G. M. Shaw. Model-based cardiac diagnosis of pulmonary embolism. Comput. Methods Programs Biomed. 87(1):46–60, 2007. https://doi.org/10.1016/j.cmpb.2007.03.010.CrossRefPubMedGoogle Scholar
- 36.Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Algorithmic processing of pressure waveforms to facilitate estimation of cardiac elastance. Biomed. Eng. Online 11(1):28, 2012. https://doi.org/10.1186/1475-925X-11-28.CrossRefPubMedPubMedCentralGoogle Scholar
- 37.Stevenson, D., J. Revie, J. G. Chase, C. E. Hann, G. M. Shaw, B. Lambermont, A. Ghuysen, P. Kolh, and T. Desaive. Beat-to-beat estimation of the continuous left and right cardiac elastance from metrics commonly available in clinical settings. Biomed. Eng. Online 11(1):73, 2012. https://doi.org/10.1186/1475-925X-11-73.CrossRefPubMedPubMedCentralGoogle Scholar
- 38.Suga, H., K. Sagawa, and A. A. Shoukas. Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ. Res. 32(3):314–322, 1973.CrossRefGoogle Scholar
- 39.Vincent, J.-L., and M. R. Pinsky. We should avoid the term “fluid overload”, 2018.Google Scholar
- 40.Zhou, T., J. Knopp, C. J. D. McKinlay, G. D. Gamble, J. E. Harding, J. G. Chase, CHYLD Study Group, et al. Glycaemic state analysis from continuous glucose monitoring measurements in infants. IFAC Pap. Online 51(27):276–281, 2018. https://doi.org/10.1016/j.ifacol.2018.11.629.CrossRefGoogle Scholar