In Vivo Evaluation of Mg–5%Zn–2%Nd Alloy as an Innovative Biodegradable Implant Material

  • L. Elkaiam
  • O. HakimiEmail author
  • G. Yosafovich-Doitch
  • S. Ovadia
  • E. Aghion
Original Article


Mg-based alloys have been considered as potential structural materials for biodegradable implants in orthopedic and cardiovascular applications, particularly when combined with other biocompatible alloying elements. However, the performances of Mg-based alloys in in vitro conditions do not accurately reflect their behavior in an in vivo environment. As such, the present study aimed at evaluating the in vivo behavior of a novel Mg–5Zn–2Nd–0.13Y–0.35Zr alloy designated as ZE52 alloy. In vivo assessment was carried out using cylindrical disks implanted into the sub-cutaneous layer of the skin at the back midline of male Wistar rats for up to 11 weeks. Post-implantation responses evaluated included well-being behavior, blood biochemical tests and histology. The corrosion rate of the implants, expressed in terms of hydrogen gas formation, was evaluated by radiographic assessment and CT examination. Results of the well-being behavioral and blood biochemical tests indicated that the in vivo behavior of ZE52 alloy implants was similar to that of inert Ti–6Al–4V alloy implants introduced into a control group. Moreover, histological analysis did not reveal any severe inflammation, as compared to the reference alloy. However, significant sub-cutaneous gas cavities were observed, indicative of the accelerated degradation of the ZE52 alloy implants. The accelerated degradation was also manifested by the formation of alloy debris that was encapsulated within the gas cavities. Post-implantation gas bubble puncturing resulted in the complete degradation of the Mg-based implants, indicating that the inert nature of the gas prevented accelerated degradation of the alloy before it was naturally absorbed by the body.


Magnesium Biodegradable Implants Encapsulation In vivo 



The authors would like to thank Prof. Ilan Shelef for assistance with CT examination.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.


  1. 1.
    Aghion, E. Biodegradable metals. Metals 804:1–4, 2018.Google Scholar
  2. 2.
    Aghion, E., B. Bronfin, D. Eliezer, F. Von Buch, H. Frieddrich, and S. Schumann. The art of developing new Magnesium alloys for high temperature applications. Mater. Sci. Forum 419–422:407–418, 2003.CrossRefGoogle Scholar
  3. 3.
    Aghion, E., B. Bronfin, N. Moscovitch, and Y. Gueta. Effect of yttrium additions on the properties of grain-refined Mg-3%Nd alloy. J. Mater. Sci. 43:4870–4875, 2008.CrossRefGoogle Scholar
  4. 4.
    Aghion, E., T. Yered, Y. Gueta, and Y. Perez. The prospects of carrying and releasing drugs via biodegradable magnesium foam. Adv. Biomater. 8:B374–B379, 2010.Google Scholar
  5. 5.
    Agrawal, C. M. Reconstructing the human body using biomaterials. J. Miner. Met. Mater. Soc. 50:31–35, 1998.CrossRefGoogle Scholar
  6. 6.
    Amerstorfer, F., A. Zitek, A. M. Weinberg, E. Martinelli, J. Eichler, J. Draxler, J. F. Loffler, M. Meischel, L. Fischer, P. J. Uggowitzer, S. Haan, S. E. Stanzl-Tschegg, S. F. Fischerauer, T. Kraus, and T. Prohaska. Long-term in vivo degradation behavior and near-implant distribution of resorbed elements for magnesium alloys WZ21 and ZX50. Acta Biomater. 42:440–450, 2016.CrossRefPubMedGoogle Scholar
  7. 7.
    Brar, H., M. Platt, M. Sarntinoranont, P. Martin, and M. Manuel. Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61:31–34, 2009.CrossRefGoogle Scholar
  8. 8.
    Bronfin, B., E. Aghion, M. Katsir, F. Von Buch, and S. Schumann. Die casting Magnesium alloys for elevate temperature applications. In: TMS Annual meeting Magnesium Technology, New Orleans, Louisiana, US, pp. 127–130, 2001.Google Scholar
  9. 9.
    Cha, P. R., G. F. Yang, H. K. Seok, H. S. Han, J. P. Ahn, J. Y. Byun, J. Y. Jung, K. H. Hong, K. S. Lee, S. C. Lee, S. J. Yang, S. Y. Cho, Y. C. Kim, and Y. Y. Kim. Biodegradability engineering of biodegradable Mg alloys: tailoring the electrochemical properties and microstructure of constituent phases. Sci. Rep. 3(2367):1–6, 2013.Google Scholar
  10. 10.
    Chen, D., Y. He, H. Tao, Y. Zhang, Y. Jiang, X. Zhang, and S. Zhang. Biocompatibility of magnesium-zinc alloy in biodegradable orthopedic implants. Int. J. Mol. Med. 28:343–348, 2011.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen, Y., C. Smith, J. Sankar, and Z. Xu. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 10:4561–4573, 2014.CrossRefPubMedGoogle Scholar
  12. 12.
    Chou, D. T., B. Lee, D. Hong, J. Ferrero, P. Saha, P. N. Kumta, Z. Q. Tan, and Z. Y. Dong. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials. Acta Biomater. 9:8518–8533, 2013.CrossRefPubMedGoogle Scholar
  13. 13.
    Claes, L. Mechanical characterization of biodegradable implants. Clin. Mater. 10:41–46, 1992.CrossRefPubMedGoogle Scholar
  14. 14.
    Elkaiam, L., E. Aghion, J. Goldman, and O. Hakimi. The effect of Nd on mechanical properties and corrosion performance of biodegradable Mg-5%Zn alloy. Metals 438:1–13, 2018.Google Scholar
  15. 15.
    Gu, X., S. Zhong, T. Xi, Y. Cheng, and Y. Zheng. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials 30:484–498, 2009.CrossRefPubMedGoogle Scholar
  16. 16.
    Hakimi, O., E. Aghion, and J. Goldman. Improved stress corrosion cracking resistance of a novel biodegradable EW62 Mg alloy by rapid solidification, in simulated electrolytes. Mater. Sci. Eng. C 51:226–232, 2015.CrossRefGoogle Scholar
  17. 17.
    Henderson, S. E., A. J. Almarza, D. T. Chou, K. Verdelis, P. N. Kumta, S. Maiti, S. Pal, and W. L. Chung. Magnesium alloys as a biomaterial for degradable craniofacial screws. Acta Biomater. 10:2323–2332, 2014.CrossRefPubMedGoogle Scholar
  18. 18.
    Hong, D., B. Lee, B. E. Collins, D. T. Chou, P. Saha, P. N. Kumta, Z. Q. Tan, and Z. Y. Dong. In vitro degradation and cytotoxicity response of Mg-4% Zn-0.5% Zr (ZK40) alloy as a potential biodegradable material. Acta Biomater. 9:8534–8547, 2013.CrossRefPubMedGoogle Scholar
  19. 19.
    Katarivas-Levy, G., E. Aghion, J. Goldman, R. Vago, and Y. Ventura. Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment. Mater. Sci. Eng. C 62:752–761, 2016.CrossRefGoogle Scholar
  20. 20.
    Kety, S. S. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol. Rev. 3:1–41, 1951.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Kraus, T., A. C. Hanzi, A. M. Weinberg, J. F. Loffler, P. J. Uggowitzer, and S. F. Fischerauer. Magnesium alloys for temporary implants in osteosynthesis: in vivo studies on their degradation and interaction with bone. Acta Biomater. 12:1230–1238, 2012.CrossRefGoogle Scholar
  22. 22.
    Kuhlaman, J., D. Hoche, E. Willbold, F. Witte, I. Bartsch, N. Hort, O. Holz, S. Schuchardt, and W. R. Heineman. Fast escape of hydrogen from gas cavities around corroding magnesium implants. Acta Biomater. 9:8714–8721, 2013.CrossRefGoogle Scholar
  23. 23.
    Levy, G., E. Aghion, and S. Ovadia. In vivo behavior of biodegradable Mg-Nd-Y-Zr-Ca alloy. J. Mater. Sci: Mater. Med. 23:805–812, 2012.Google Scholar
  24. 24.
    Li, Z., S. Lou, X. Gu, and Y. Zheng. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344, 2008.CrossRefPubMedGoogle Scholar
  25. 25.
    Mordike, B. L., and P. Lukác. Physical metallurgy. In: Magnesium technology—metallurgy, design data, applications, edited by H. E. Friedrich, and B. L. Mordike. Berlin: Springer, 2006, pp. 76–77.Google Scholar
  26. 26.
    Poiner, E., D. Fawcett, and S. Brundavanam. Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am. J. Biomed. Eng. 2:218–240, 2012.Google Scholar
  27. 27.
    Power, G. G., and H. Stegall. Solubility of gases in human red blood cell ghosts. J. Appl. Physiol. 29:145–149, 1970.CrossRefPubMedGoogle Scholar
  28. 28.
    Remennik, S., D. Shechtman, E. Willbold, F. Witte, I. Bartsch, and I. New. fast corroding high ductility Mg-Bi-Ca and Mg-Bi-Si alloys, with no clinically observable gas formation in bone implants. Mater. Sci. Eng. B 176:1653–1659, 2011.CrossRefGoogle Scholar
  29. 29.
    Shuhua, C., F. Fangfang, L. Nianfeng, and L. Ting. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg-Zn alloys. Mater. Sci. Eng. C 32:2570–2577, 2012.CrossRefGoogle Scholar
  30. 30.
    Song, G. Control of biodegradation of biocompatible magnesium alloys. Corros. Sci. 49:1696–1701, 2007.CrossRefGoogle Scholar
  31. 31.
    Staige, M. P., A. M. Pietak, G. Dias, and J. Huadmai. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734, 2006.CrossRefGoogle Scholar
  32. 32.
    Tapiero, H., and K. D. Tew. Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed. Pharmacother. 57:399–411, 2003.CrossRefPubMedGoogle Scholar
  33. 33.
    Uhthoff, H. K., D. S. Backman, and P. Poitras. Internal plate fixation of fractures: short history and recent developments. J. Orthop. Sci. 11:118–126, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Van Slyke, D. D., and J. J. Sendroy. Studies of gas and electrolyte equilibria in blood. XI. The solubility of hydrogen at 38° in blood serum and cells. J. Biol. Chem. 78:801–805, 1928.Google Scholar
  35. 35.
    Wang, Y., G. Yuan, J. Niu, J. Zhang, L. Mao, Y. He, Y. Jiang, and Z. Zhu. In vivo degradation behavior and biocompatibility of Mg-Nd-Zn-Zr alloy at early stage. Int. J. Mol. Med. 29:178–184, 2011.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Wen, C. E., M. Mabuchi, K. Shimojima, T. Asahina, Y. Chino, and Y. Yamada. Processing of biocompatible porous Ti and Mg. Scr. Mater. 45:1147–1153, 2001.CrossRefGoogle Scholar
  37. 37.
    Witte, F., A. Meyer-Lindenberg, C. J. Wirth, E. Switzer, H. Haferkamp, H. Windhagen, and V. Kaese. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563, 2005.CrossRefPubMedGoogle Scholar
  38. 38.
    Witte, F., A. Pisch, F. Beckmann, H. A. Crostack, H. Windhagen, J. Fischer, J. Nellesen, and V. Kaese. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018, 2006.CrossRefPubMedGoogle Scholar
  39. 39.
    Witte, F., C. Vogt, F. Feyerabend, K. U. Kainer, N. Hort, R. Willumeit, and S. Cohen. Degradable biomaterials on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12:63–72, 2008.CrossRefGoogle Scholar
  40. 40.
    Yun, Y. H., C. Fox, D. Doepke, D. Hurd, D. Xue, H. B. Halsall, J. Kuhlmall, N. Lee, M. J. Schulz, P. Nagy, S. Sundaramurthy, V. N. Shanov, W. Li, W. R. Heineman, X. Guo, Y. Liu, Z. Dong, and Z. Yin. Revolutionizing biodegradable metals. Mater. Today 12:22–32, 2009.CrossRefGoogle Scholar
  41. 41.
    Zhang, E., F. Pan, G. Yu, K. Yang, and L. Xu. In vivo evaluation of biodegradable alloy bone implant in the first 6 months implantation. J. Bio. Mater. Res. Part A 90:882–893, 2008.Google Scholar
  42. 42.
    Zhang, S., C. Xie, C. Zhao, H. Tao, J. Li, Y. Song, Y. Bian, Y. He, Y. Jiang, Y. Zhang, and X. Zhang. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg-Zn alloy. Mater. Sci. Eng. C 29:1907–1912, 2009.CrossRefGoogle Scholar
  43. 43.
    Zhang, S., C. Xie, C. Zhoa, H. Tao, J. Li, X. Zhang, Y. Bian, Y. He, Y. Jiang, Y. Song, and Y. Zhang. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater. 6:626–640, 2010.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao, D., D. Hong, J. Kuhlmann, M. Joshi, P. Salunke, P. N. Kumta, S. Chen, T. Wang, V. N. Shanov, W. R. Heinema, and Z. Dong. In vivo monitoring the biodegradable of magnesium alloys with an electrochemical H2 sensor. Acta Biomater. 36:361–368, 2016.CrossRefPubMedGoogle Scholar
  45. 45.
    Zhao, D., F. Lu, F. Witte, J. Li, J. Wang, and L. Qin. Current status on clinical applications of magnesium-based orthopedic implants: a review from clinical translational perspective. Biomaterials 112:287–302, 2017.CrossRefPubMedGoogle Scholar
  46. 46.
    Zucchi, F., A. Frignani, C. Monticelli, G. Trabanelli, and V. Grass. Electrochemical behavior of a magnesium alloy containing rare earth elements. J. Appl. Electrochem. 26:195–204, 2006.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  2. 2.Department of Mechanical EngineeringSami Shamoon College of EngineeringBeer-ShevaIsrael
  3. 3.Faculty of Health ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations