Annals of Biomedical Engineering

, Volume 48, Issue 1, pp 169–180 | Cite as

An Evaluation of the Influence of Coronary Flow on Transcatheter Heart Valve Neo-Sinus Flow Stasis

  • Immanuel David Madukauwa-David
  • Vahid Sadri
  • Prem A Midha
  • Vasilis Babaliaros
  • Cyrus Aidun
  • Ajit P. YoganathanEmail author


Transcatheter heart valve (THV) leaflet thrombosis in the neo-sinus and associated reduced leaflet motion is of clinical concern due to risks of embolism and worsened valve hemodynamics. Flow stasis in the neo-sinus (the space between the native and THV leaflets) is a known risk factor, but the role of proximal coronary flow is yet to be investigated. We tested two replicas of FDA approved commercial THVs—intra-annular and supra-annular (similar to the SAPIEN 3 and CoreValve families)—in a left heart simulator with coronary flow. Velocity fields in the left coronary cusp (LCC) and non (NCC) neo-sinus were quantified using high speed particle image velocimetry and particle residence times (PRT) were computed to evaluate flow stasis in the region. The supra-annular THV LCC neo-sinus had shorter PRT than its NCC neo-sinus (0.66 ± 0.00 vs. 0.76 ± 0.04, p = 0.038), while the intra-annular THV LCC neo-sinus had similar PRT to its NCC neo-sinus (1.93 ± 0.05 vs. 1.92 ± 0.03 cycles, p = 0.889). The supra-annular valve LCC and NCC neo-sinuses had shorter PRT than their intra-annular valve counterparts (p < 0.001). These results showed that coronary flow reduces flow stasis in the supra-annular THV neo-sinus and, ostensibly, thrombosis risk in the region. This effect was not significant in the intra-annular valve.


TAVR Coronary flow Neo-sinus Flow Stasis Thrombosis Particle image velocimetry 



Transcatheter heart valve


Left coronary cusp


Right coronary cusp


Non-coronary cusp


Particle residence time


Georgia Tech TAVR intra-annular device


Georgia Tech TAVR supra-annular device


Left-coronary sinus


Non-coronary sinus


Sino-tubular junction


Particle image velocimetry



The authors would like to acknowledge the members of the Cardiovascular Fluid Mechanics Laboratory for their assistance and feedback.


The work at the Cardiovascular Fluid Mechanics Laboratory at the Georgia Institute of Technology was funded through the BME Gurley Foundation and the Mary and James Wesley Fellowship Endowment, as well as discretionary funds made available to the Principal Investigator, such as the Wallace H Coulter Endowed Chair.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Supplementary material

10439_2019_2324_MOESM1_ESM.tiff (12.1 mb)
Supplementary material 1 Supplementary figure 1: Schematic of the coronary flow module. Components included a piston pump, two check valves, a flow probe, and variable resistance. (TIFF 12383 kb)
10439_2019_2324_MOESM2_ESM.tiff (19.4 mb)
Supplementary material 2 Supplementary figure 2: IAD flow streamlines and velocities for the LCC and NCC neo-sinuses and native sinuses at select time points in systole. (TIFF 19832 kb)
10439_2019_2324_MOESM3_ESM.tiff (19.4 mb)
Supplementary material 3 Supplementary figure 3: SAD flow streamlines and velocities for the LCC and NCC neo-sinuses and native sinuses at select time points in systole. (TIFF 19909 kb)
10439_2019_2324_MOESM4_ESM.tiff (21.3 mb)
Supplementary material 4 Supplementary figure 3: Representative snapshots of particle positions for the LCC of the supra-annular valve. (TIFF 0 kb)

Supplementary material 5 Video 1: Velocity contours and streamlines for the supra-annular valve LCC. (MP4 37794 kb)

Supplementary material 6 Video 2: Velocity contours and streamlines for the intra-annular valve LCC. (MP4 45106 kb)

Supplementary material 7 Video 3: Velocity contours and streamlines for the supra-annular valve NCC. (MP4 25784 kb)

Supplementary material 8 Video 4: Velocity contours and streamlines for the intra-annular valve NCC. (MP4 41932 kb)

10439_2019_2324_MOESM9_ESM.mp4 (28.9 mb)
Supplementary material 9 Video 5: Velocity contours and vectors for the supra-annular valve LCC. (MP4 29595 kb)
10439_2019_2324_MOESM10_ESM.mp4 (25.8 mb)
Supplementary material 10 Video 6: Velocity contours and vectors for the intra-annular valve LCC. (MP4 26463 kb)
10439_2019_2324_MOESM11_ESM.mp4 (22.6 mb)
Supplementary material 11 Video 7: Velocity contours and vectors for the supra-annular valve NCC. (MP4 23158 kb)
10439_2019_2324_MOESM12_ESM.mp4 (25.1 mb)
Supplementary material 12 Video 8: Velocity contours and vectors for the intra-annular valve NCC. (MP4 25668 kb)


  1. 1.
    Butnaru, A., J. Shaheen, D. Tzivoni, R. Tauber, D. Bitran, and S. Silberman. Diagnosis and treatment of early bioprosthetic malfunction in the mitral valve position due to thrombus formation. Am. J. Cardiol. 112:1439–1444, 2013.CrossRefGoogle Scholar
  2. 2.
    Chakravarty, T., L. Søndergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, H. Jilaihawi, T. Shiota, Y. Abramowitz, T. H. Jørgensen, T. Rami, S. Israr, G. Fontana, M. de Knegt, A. Fuchs, P. Lyden, A. Trento, D. L. Bhatt, M. B. Leon, R. R. Makkar, D. Ramzy, W. Cheng, R. J. Siegel, L. M. Thomson, G. Mangat, B. Hariri, F. J. Sawaya, and H. K. Iversen. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet 389:2383–2392, 2017.CrossRefGoogle Scholar
  3. 3.
    Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, C. Martin, T. Pham, Q. Wang, P. A. Midha, V. Raghav, and A. P. Yoganathan. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45:310–331, 2017.CrossRefGoogle Scholar
  4. 4.
    De Marchena, E., J. Mesa, S. Pomenti, C. Marin y Kall, X. Marincic, K. Yahagi, E. Ladich, R. Kutz, Y. Aga, M. Ragosta, A. Chawla, M. E. Ring, and R. Virmani. Thrombus formation following transcatheter aortic valve replacement. J. Am. Coll. Cardiol. Cardiovasc. Interv. 8:728–739, 2015.CrossRefGoogle Scholar
  5. 5.
    Ducci, A., F. Pirisi, S. Tzamtzis, and G. Burriesci. Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: an in-vitro study. J. Biomech. 49:4080–4089, 2016. Scholar
  6. 6.
    Egbe, A. C., S. V. Pislaru, P. A. Pellikka, J. T. Poterucha, H. V. Schaff, J. J. Maleszewski, and H. M. Connolly. Bioprosthetic valve thrombosis versus structural failure. J. Am. Coll. Cardiol. 66:2285–2294, 2015.CrossRefGoogle Scholar
  7. 7.
    Fuchs, A., O. De Backer, M. Brooks, M. C. De Knegt, G. Bieliauskas, M. Yamamoto, R. Yanagisawa, K. Hayashida, L. Søndergaard, and K. F. Kofoed. Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves. EuroIntervention 13:1067–1075, 2017.CrossRefGoogle Scholar
  8. 8.
    Guyton, A. C., and J. E. Hall. TextBook in medical. Physiology 2006. Scholar
  9. 9.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann. Thorac. Surg. 106:70–78, 2018.CrossRefGoogle Scholar
  10. 10.
    Hatoum, H., P. Maureira, S. Lilly, and L. P. Dasi. Impact of leaflet laceration on transcatheter aortic valve-in-valve washout: BASILICA to solve neosinus and sinus stasis. JACC Cardiovasc. Interv. 12:1229–1237, 2019.CrossRefGoogle Scholar
  11. 11.
    Hatoum, H., P. Maureira, S. Lilly, and L. P. Dasi. Impact of BASILICA on sinus and neo-sinus hemodynamics after valve-in-valve with and without coronary flow. Cardiovasc. Revasc. Med. 2019. Scholar
  12. 12.
    Kasel, A. M., J. M. Khan, A. B. Greenbaum, and J. M. Michel. Intentional transcatheter laceration of the coronary cusp to prevent left main stem obstruction during transcatheter aortic valve implantation: first European experience with the BASILICA technique in a native aortic valve. Eur. Heart J. 40(17):1384–1385, 2018. Scholar
  13. 13.
    Khan, J. M., D. Dvir, A. B. Greenbaum, V. C. Babaliaros, T. Rogers, G. Aldea, M. Reisman, G. B. Mackensen, M. H. K. Eng, G. Paone, D. D. Wang, R. A. Guyton, C. M. Devireddy, W. H. Schenke, and R. J. Lederman. Transcatheter laceration of aortic leaflets to prevent coronary obstruction during transcatheter aortic valve replacement: concept to first-in-human. JACC Cardiovasc. Interv. 11(7):677–689, 2018. Scholar
  14. 14.
    Laschinger, J. C., C. Wu, N. G. Ibrahim, and J. E. Shuren. Reduced leaflet motion in bioprosthetic aortic valves-the FDA perspective. N. Engl. J. Med. 373:1996–1998, 2015.CrossRefGoogle Scholar
  15. 15.
    Leetmaa, T., N. C. Hansson, J. Leipsic, K. Jensen, S. H. Poulsen, H. R. Andersen, J. M. Jensen, J. Webb, P. Blanke, M. Tang, and B. L. Norgaard. Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography. Circ. Cardiovasc. Interv. 8:e001596, 2015.CrossRefGoogle Scholar
  16. 16.
    Madukauwa-David, I. D., P. A. Midha, R. Sharma, K. McLain, R. Mitra, K. Crawford, S. H. Yoon, R. R. Makkar, and A. P. Yoganathan. Characterization of aortic root geometry in transcatheter aortic valve replacement patients. Catheter. Cardiovasc. Interv. 93:134–140, 2019.CrossRefGoogle Scholar
  17. 17.
    Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. de Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C. A. Kliger, H. Guo, A. D. Pichard, N. J. Weissman, S. Kapadia, E. Manasse, D. L. Bhatt, M. B. Leon, and L. Søndergaard. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.CrossRefGoogle Scholar
  18. 18.
    Midha, P. A. A Parametric Investigation of Transcatheter Aortic Valve Replacement Performance. Dr. Thesis, 2017.Google Scholar
  19. 19.
    Midha, P. A., V. Raghav, I. Okafor, and A. P. Yoganathan. The effect of valve-in-valve implantation height on sinus flow. Ann. Biomed. Eng. 45:405–412, 2017.CrossRefGoogle Scholar
  20. 20.
    Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, G. Kumar, V. H. Thourani, H. Jilaihawi, V. Babaliaros, R. R. Makkar, and A. P. Yoganathan. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 136:1598–1609, 2017.CrossRefGoogle Scholar
  21. 21.
    Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43:2231–2241, 2015.CrossRefGoogle Scholar
  22. 22.
    Oliver, J. M., P. Gallego, A. Gonzalez, F. J. Dominguez, C. Gamallo, and J. M. Mesa. Bioprosthetic mitral valve thrombosis: clinical profile, transesophageal echocardiographic features, and follow-up after anticoagulant therapy. J. Am. Soc. Echocardiogr. 9:691–699, 1996.CrossRefGoogle Scholar
  23. 23.
    Pache, G., P. Blanke, W. Zeh, and N. Jander. Cusp thrombosis after transcatheter aortic valve replacement detected by computed tomography and echocardiography. Eur. Heart J. 34:3546, 2013.CrossRefGoogle Scholar
  24. 24.
    Rashid, H. N., A. Nasis, R. P. Gooley, J. D. Cameron, and A. J. Brown. The prevalence of computed tomography-defined leaflet thrombosis in intra- versus supra-annular transcatheter aortic valve prostheses. Catheter. Cardiovasc. Interv. 92:1414–1416, 2018.CrossRefGoogle Scholar
  25. 25.
    Sakamoto, S., S. Takahashi, A. U. Coskun, M. I. Papafaklis, A. Takahashi, S. Saito, P. H. Stone, and C. L. Feldman. Relation of distribution of coronary blood flow volume to coronary artery dominance. Am. J. Cardiol. 111(10):1420–1424, 2013. Scholar
  26. 26.
    Swanson, W. M., and R. E. Clark. Dimensions and geometric relationships of the human aortic valve as a function of pressure. Circ. Res. 35:871–882, 1974.CrossRefGoogle Scholar
  27. 27.
    Trepels, T., S. Martens, M. Doss, S. Fichtlscherer, and V. Schächinger. Thrombotic restenosis after minimally invasive implantation of aortic valve stent. Circulation 120:e23–e24, 2009.CrossRefGoogle Scholar
  28. 28.
    Trusty, P., V. Sadri, I. D. Madukauwa-David, N. Kamioka, R. Sharma, R. Makkar, V. Babaliaros, and A. P. Yoganathan. Neosinus flow stasis correlates with thrombus volume post-TAVR: a patient-specific in vitro study. JACC. Cardiovasc. Interv. 12(13):1288–1290, 2019. Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory UniversityAtlantaUSA
  2. 2.Exponent, Inc.PhiladelphiaUSA
  3. 3.Emory University HospitalAtlantaUSA

Personalised recommendations