Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 12, pp 2384–2401 | Cite as

Cortical and Trabecular Bone Fracture Characterisation in the Vertebral Body Using Acoustic Emission

  • Dale L. Robinson
  • Kwong Ming Tse
  • Melanie Franklyn
  • JiangYue Zhang
  • David Ackland
  • Peter Vee Sin LeeEmail author
Article

Abstract

The ability to rapidly detect localised fractures of cortical and/or trabecular bone sustained by the vertebral body would enhance the analysis of vertebral fracture initiation and propagation during dynamic loading. In this study, high rate axial compression tests were performed on twenty sets of three-vertebra lumbar spine specimens. Acoustic Emission (AE) sensor measurements of sound wave pressure were used to classify isolated trabecular fractures and severe compressive fractures of vertebral body cortical and trabecular bone. Fracture detection using standard AE parameters was compared to that of traditional mechanical parameters obtained from load cell and displacement readings. Results indicated that the AE parameters achieved slightly enhanced classification of isolated trabecular fractures, whereas the mechanical parameters better identified combined fractures of cortical and trabecular bone. These findings demonstrate that AE may be used to promptly and accurately identify localised fractures of trabecular bone, whereas more extensive fractures of the vertebral body are best identified by load cell readings due to the considerable loss in compressive resistance. The discrimination thresholds corresponding to the AE parameters were based on calibrated measurements of AE wave pressure and may ultimately be used to examine the onset and progression of vertebral fracture in other loading scenarios.

Keywords

Acoustic emission Dynamic compression Lumbar spine vertebrae Vertebral fracture 

Notes

Acknowledgments

The authors would like to acknowledge the support from Defence Science and Technology Group, Australia and the collaboration with U.S. Army Research Laboratory for this research. We also acknowledge the facilities and scientific and technical assistance of the National Imaging Facility, a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at Monash Biomedical Imaging, Monash University.

Supplementary material

10439_2019_2316_MOESM1_ESM.pdf (142 kb)
Supplementary material 1 (PDF 183 kb)

References

  1. 1.
    Agcaoglu, S., and O. Akkus. Acoustic emission based monitoring of the microdamage evolution during fatigue of human cortical bone. J. Biomech. Eng. 135:081005, 2013.Google Scholar
  2. 2.
    Aggelis, D. G., M. Strantza, O. Louis, F. Boulpaep, D. Polyzos, and D. van Hemelrijck. Fracture of human femur tissue monitored by acoustic emission sensors. Sensors 15:5803–5819, 2015.PubMedGoogle Scholar
  3. 3.
    Arun, M. W. J., N. Yoganandan, B. D. Stemper, and F. A. Pintar. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests. J. Mech. Behav. Biomed. Mater. 40:156–160, 2014.PubMedGoogle Scholar
  4. 4.
    Burge, R., B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J. Bone Miner. Res. 22:465–475, 2007.PubMedGoogle Scholar
  5. 5.
    Carretta, R., S. Lorenzetti, and R. Müller. Towards patient-specific material modeling of trabecular bone post-yield behavior. Int. J. Numer. Methods Biomed. 29:250–272, 2013.Google Scholar
  6. 6.
    Christen, P., S. Boutroy, R. Ellouz, R. Chapurlat, and B. Van Rietbergen. Least-detectable and age-related local in vivo bone remodelling assessed by time-lapse HR-pQCT. PLoS ONE 13:1–11, 2018.Google Scholar
  7. 7.
    Christiansen, B. A., and M. L. Bouxsein. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr. Osteoporos. Rep. 8:198–204, 2010.PubMedGoogle Scholar
  8. 8.
    Cormier, J., S. Manoogian, J. Bisplinghoff, C. McNally, and S. Duma. The use of acoustic emission in facial fracture detection. Biomed. Sci. Instrum. 44:147–152, 2008.PubMedGoogle Scholar
  9. 9.
    Crawford, R. P., C. E. Cann, and T. M. Keaveny. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750, 2003.PubMedGoogle Scholar
  10. 10.
    Curry, W. H., F. A. Pintar, N. B. Doan, H. S. Nguyen, G. Eckardt, J. L. Baisden, D. J. Maiman, G. R. Paskoff, B. S. Shender, and B. D. Stemper. Lumbar spine endplate fractures: biomechanical evaluation and clinical considerations through experimental induction of injury. J. Orthop. Res. 34:1084–1091, 2016.PubMedGoogle Scholar
  11. 11.
    Goodwin, B. D., F. A. Pintar, and N. Yoganandan. Acoustic emission signatures during failure of vertebra and long bone. Ann. Biomed. Eng. 45:1520–1533, 2017.PubMedGoogle Scholar
  12. 12.
    Griffin, J. Traceability of Acoustic Emission measurements for a proposed calibration method:classification of characteristics and identification using signal analysis. Mech. Syst. Signal Process. 50–51:757–783, 2015.Google Scholar
  13. 13.
    Hagen, E. M., S. A. Lie, T. Rekand, N. E. Gilhus, and M. Gronning. Mortality after traumatic spinal cord injury: 50 years of follow-up. J. Neurol. Neurosurg. Psychiatry 81:368–373, 2010.PubMedGoogle Scholar
  14. 14.
    Hansson, T., B. Roos, and A. L. F. Nachemson. The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55, 1980.PubMedGoogle Scholar
  15. 15.
    Hasegawa, K., M. Abe, T. Washio, and T. Hara. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density. Spine 26:957–963, 2001.PubMedGoogle Scholar
  16. 16.
    Hasserius, R., M. K. Karlsson, B. Jónsson, I. Redlund-Johnell, and O. Johnell. Long-term morbidity and mortality after a clinically diagnosed vertebral fracture in the elderly-a 12- and 22-year follow-up of 257 patients. Calcif. Tissue Int. 76:235–242, 2005.PubMedGoogle Scholar
  17. 17.
    Hurrell, A. Voltage to pressure conversion: are you getting `phased’ by the problem? J. Phys. Conf. Ser. 1:57–62, 2004.Google Scholar
  18. 18.
    Jackman, T. M., A. I. Hussein, C. Curtiss, P. M. Fein, A. Camp, L. De Barros, and E. F. Morgan. Quantitative, 3D visualization of the initiation and progression of vertebral fractures under compression and anterior flexion. J. Bone Miner. Res. 31:777–788, 2016.PubMedGoogle Scholar
  19. 19.
    Juszczyk, M. M., L. Cristofolini, M. Salvà, L. Zani, E. Schileo, and M. Viceconti. Accurate in vitro identification of fracture onset in bones: failure mechanism of the proximal human femur. J. Biomech. 46:158–164, 2013.PubMedGoogle Scholar
  20. 20.
    Landham, P. R., S. J. Gilbert, H. L. A. Baker-Rand, P. Pollintine, K. A. R. Brown, M. A. Adams, and P. Dolan. Pathogenesis of vertebral anterior wedge deformity: a 2-stage process? Spine 40:902–908, 2015.PubMedGoogle Scholar
  21. 21.
    Lane, N. E., M. C. Nevitt, H. K. Genant, and M. C. Hochberg. Reliability of new indices of radiographic osteoarthritis of the hand and hip and lumbar disc degeneration. J. Rheumatol. 20:1911–1918, 1993.PubMedGoogle Scholar
  22. 22.
    Lin, W., F. Serra-Hsu, J. Cheng, and Y.-X. Qin. Frequency specific ultrasound attenuation is sensitive to trabecular bone structure. Ultrasound Med. Biol. 38:2198–2207, 2012.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu, P. F., J. K. Chu, Y. L. Liu, and J. Y. Zheng. A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater. Des. 37:228–235, 2012.Google Scholar
  24. 24.
    Martelli, S., and E. Perilli. Time-elapsed synchrotron-light microstructural imaging of femoral neck fracture. J. Mech. Behav. Biomed. Mater. 84:265–272, 2018.PubMedGoogle Scholar
  25. 25.
    Mattes, D., D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22:120–128, 2003.PubMedGoogle Scholar
  26. 26.
    Morgan, E. F., H. H. Bayraktar, and T. M. Keaveny. Trabecular bone modulus-density relationships depend on anatomic site. J. Biomech. 36:897–904, 2003.PubMedGoogle Scholar
  27. 27.
    Ochia, R. S., and R. P. Ching. Internal pressure measurements during burst fracture formation in human lumbar vertebrae. Spine 27:1160–1167, 2002.PubMedGoogle Scholar
  28. 28.
    Panjabi, M. M., T. R. Oxland, M. Kifune, M. Arand, L. Wen, and A. Chen. Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation. Spine 20:1122–1127, 1995.PubMedGoogle Scholar
  29. 29.
    Pickett, G. E., M. Campos-Benitez, J. L. Keller, and N. Duggal. Epidemiology of traumatic spinal cord injury in Canada. Spine 31:799–805, 2006.PubMedGoogle Scholar
  30. 30.
    Sasso, M., G. Haïat, Y. Yamato, S. Naili, and M. Matsukawa. Frequency dependence of ultrasonic attenuation in bovine cortical bone: an in vitro study. Ultrasound Med. Biol. 33:1933–1942, 2007.PubMedGoogle Scholar
  31. 31.
    Shridharani, J. K., B. R. Bigler, C. A. Cox, M. A. Ortiz-Paparoni, and C. R. Bass. Sensitive injury detection in the cervical spine using acoustic emission and continuous wavelet transform. In: IRCOBI Conference 2016, Malaga, Spain, pp. 131–142, 2016. http://www.ircobi.org/wordpress/downloads/irc16/pdf-files/24.pdf.
  32. 32.
    Stemper, B. D., S. Chirvi, N. Doan, J. L. Baisden, D. J. Maiman, W. H. Curry, N. Yoganandan, F. A. Pintar, G. Paskoff, and B. S. Shender. Biomechanical tolerance of whole lumbar spines in straightened posture subjected to axial acceleration. J. Orthop. Res. 36:1747–1756, 2017.PubMedGoogle Scholar
  33. 33.
    Stemper, B. D., S. G. Storvik, N. Yoganandan, J. L. Baisden, R. J. Fijalkowski, F. A. Pintar, B. S. Shender, and G. R. Paskoff. A new PMHS model for lumbar spine injuries during vertical acceleration. J. Biomech. Eng. 133:081002, 2011.PubMedGoogle Scholar
  34. 34.
    Stemper, B. D., N. Yoganandan, J. L. Baisden, S. Umale, A. S. Shah, B. S. Shender, and G. R. Paskoff. Rate-dependent fracture characteristics of lumbar vertebral bodies. J. Mech. Behav. Biomed. Mater. 41:271–279, 2015.PubMedGoogle Scholar
  35. 35.
    Taddei, F., L. Cristofolini, S. Martelli, H. S. Gill, and M. Viceconti. Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J. Biomech. 39:2457–2467, 2006.PubMedGoogle Scholar
  36. 36.
    Van Toen, C., J. Street, T. R. Oxland, and P. A. Cripton. Acoustic emission signals can discriminate between compressive bone fractures and tensile ligament injuries in the spine during dynamic loading. J. Biomech. 45:1643–1649, 2012.PubMedGoogle Scholar
  37. 37.
    Vasquez, K. B., F. T. Brozoski, K. P. Logsdon, and V. C. Chancey. Retrospective analysis of injuries in underbody blast events: 2007–2010. Mil. Med. 183:347–352, 2018.PubMedGoogle Scholar
  38. 38.
    Wells, J. G., and R. D. Rawlings. Acoustic emission and mechanical properties of trabecular bone. Biomaterials 6:218–224, 1985.PubMedGoogle Scholar
  39. 39.
    Wenzel, T. E., M. B. Schaffler, and D. P. Fyhrie. In vivo trabecular microcracks in human vertebral bone. Bone 19:89–95, 1996.PubMedGoogle Scholar
  40. 40.
    Willén, J., S. Lindahl, L. Irstam, B. Aldman, and A. Nordwall. The thoracolumbar crush fracture an experimental study on instant axial dynamic loading: The resulting fracture type and its stability. Spine 9:624–631, 1984.PubMedGoogle Scholar
  41. 41.
    Yeh, O. C., and T. M. Keaveny. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone. J. Orthop. Res. 19:1001–1007, 2001.PubMedGoogle Scholar
  42. 42.
    Yoganandan, N., J. Moore, F. A. Pintar, A. Banerjee, N. DeVogel, and J. Zhang. Role of disc area and trabecular bone density on lumbar spinal column fracture risk curves under vertical impact. J. Biomech. 72:90–98, 2018.PubMedGoogle Scholar
  43. 43.
    Yoganandan, N., F. A. Pintar, B. D. Stemper, J. L. Baisden, R. Aktay, B. S. Shender, G. Paskoff, and P. Laud. Trabecular bone density of male human cervical and lumbar vertebrae. Bone 39:336–344, 2006.PubMedGoogle Scholar
  44. 44.
    Zhao, F. D., P. Pollintine, B. D. Hole, M. A. Adams, and P. Dolan. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone 44:372–379, 2009.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Dale L. Robinson
    • 1
  • Kwong Ming Tse
    • 1
  • Melanie Franklyn
    • 2
  • JiangYue Zhang
    • 3
  • David Ackland
    • 1
  • Peter Vee Sin Lee
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringThe University of MelbourneMelbourneAustralia
  2. 2.Defence Science and Technology Group, Department of DefenceMelbourneAustralia
  3. 3.The Johns Hopkins University Applied Physics LabLaurelUSA

Personalised recommendations