Development, Validation and Pilot Field Deployment of a Custom Mouthpiece for Head Impact Measurement

  • Andrea M. Rich
  • Tanner M. Filben
  • Logan E. Miller
  • Brian T. Tomblin
  • Aaron R. Van Gorkom
  • Michael A. Hurst
  • Ryan T. Barnard
  • Dena S. Kohn
  • Jillian E. Urban
  • Joel D. StitzelEmail author
Special Issue on the NCAA-DoD CARE Consortium Research


The objective of this study was to develop a mouthpiece sensor with improved head kinematic measurement for use in non-helmeted and helmeted sports through laboratory validation and pilot field deployment in female youth soccer. For laboratory validation, data from the mouthpiece sensor was compared to standard sensors mounted in a headform at the center of gravity as the headform was struck with a swinging pendulum. Linear regression between peak kinematics measured from the mouthpiece and headform showed strong correlation, with r2 values of 0.95 (slope = 1.02) for linear acceleration, 1.00 (slope = 1.00) for angular velocity, and 0.97 (slope = 0.96) for angular acceleration. In field deployment, mouthpiece data were collected from four female youth soccer players and time-synchronized with film. Film-verified events (n = 915) were observed over 9 practices and 5 games, and 632 were matched to a corresponding mouthpiece event. This resulted in an overall sensitivity of 69.2% and a positive predictive value of 80.3%. This validation and pilot field deployment data demonstrates that the mouthpiece provides highly accurate measurement of on-field head impact data that can be used to further study the effects of impact exposure in both helmeted and non-helmeted sports.


Mouthpiece Soccer Pediatric Subconcussive impacts Concussion Instrumentation Head impact exposure Head kinematics 



The authors thank the Virginia Tech Helmet Lab for their assistance in conducting the laboratory validation tests. They would also like to thank Konstantia Strates for her efforts in study coordination. Special thanks to the Childress Institute for Pediatric Trauma at Wake Forest Baptist Medical Center for providing support for this study. The National Institute of Neurological Disorders and Stroke of the National Institutes of Health, through Award Numbers R01NS091602-01A1, R01NS082453 and R01NS094410, supported members of the research team who contributed to this study. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The mouthpiece technology presented herein is patent pending.


  1. 1.
    Allison, M. A., Y. S. Kang, J. H. T. Bolte, M. R. Maltese, and K. B. Arbogast. Validation of a helmet-based system to measure head impact biomechanics in ice hockey. Med. Sci. Sports Exerc. 46:115–123, 2014.CrossRefGoogle Scholar
  2. 2.
    Bartsch, A., S. Samorezov, E. Benzel, V. Miele, and D. Brett. Validation of an “Intelligent Mouthguard” single event head impact dosimeter. Stapp Car Crash J. 58:1–27, 2014.Google Scholar
  3. 3.
    Beckwith, J. G., J. J. Chu, and R. M. Greenwald. Validation of a noninvasive system for measuring head acceleration for use during boxing competition. J. Appl. Biomech. 23:238–244, 2007.CrossRefGoogle Scholar
  4. 4.
    Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform. Ann. Biomed. Eng. 40:237–248, 2012.CrossRefGoogle Scholar
  5. 5.
    Camarillo, D. B., P. B. Shull, J. Mattson, R. Shultz, and D. Garza. An instrumented mouthguard for measuring linear and angular head impact kinematics in American football. Ann. Biomed. Eng. 41:1939–1949, 2013.CrossRefGoogle Scholar
  6. 6.
    Campbell, K. R., M. J. Warnica, I. C. Levine, J. S. Brooks, A. C. Laing, T. A. Burkhart, and J. P. Dickey. Laboratory evaluation of the gForce tracker, a head impact kinematic measuring device for use in football helmets. Ann. Biomed. Eng. 44:1246–1256, 2016.CrossRefGoogle Scholar
  7. 7.
    Chrisman, S. P. D., B. E. Ebel, E. Stein, S. J. Lowry, and F. P. Rivara. Head impact exposure in youth soccer and variation by age and sex. Clin. J. Sport Med. 29:3–10, 2019.CrossRefGoogle Scholar
  8. 8.
    Chrisman, S. P., C. L. Mac Donald, S. Friedman, J. Andre, A. Rowhani-Rahbar, S. Drescher, E. Stein, M. Holm, N. Evans, A. V. Poliakov, R. P. Ching, C. C. Schwien, M. S. Vavilala, and F. P. Rivara. Head impact exposure during a weekend youth soccer tournament. J. Child Neurol. 31:971–978, 2016.CrossRefGoogle Scholar
  9. 9.
    Cobb, B. R., A. M. Tyson, and S. Rowson. Head acceleration measurement techniques: Reliability of angular rate sensor data in helmeted impact testing. Proc. Inst. Mech. Eng. Part P 2017. Scholar
  10. 10.
    Covassin, T., C. B. Swanik, and M. L. Sachs. Sex differences and the incidence of concussions among collegiate athletes. J. Athl. Train. 38:238–244, 2003.Google Scholar
  11. 11.
    Engineers, S. O. A. Instrumentation for Impact Test, Part 1: Electronic Instrumentation. Warrendale, PA: Society of Automotive Engineers, 1995.Google Scholar
  12. 12.
    FIFA. FIFA Big Count 2006: 270 Million People Active in Football. Cairo: FIFA Communications Division, 2007.Google Scholar
  13. 13.
    Funk, J. R., J. M. Cormier, C. E. Bain, H. Guzman, E. Bonugli, and S. J. Manoogian. Head and neck loading in everyday and vigorous activities. Ann. Biomed. Eng. 39:766–776, 2011.CrossRefGoogle Scholar
  14. 14.
    Gessel, L. M., S. K. Fields, C. L. Collins, R. W. Dick, and R. D. Comstock. Concussions among United States high school and collegiate athletes. J. Athl. Train. 42:495–503, 2007.Google Scholar
  15. 15.
    Hanlon, E. M., and C. A. Bir. Real-time head acceleration measurement in girls’ youth soccer. Med. Sci. Sports Exerc. 44:1102–1108, 2012.CrossRefGoogle Scholar
  16. 16.
    Harriss, A., A. M. Johnson, D. M. Walton, and J. P. Dickey. Head impact magnitudes that occur from purposeful soccer heading depend on the game scenario and head impact location. Musculoskelet. Sci. Pract. 40:53–57, 2019.CrossRefGoogle Scholar
  17. 17.
    Higgins, M., P. D. Halstead, L. Snyder-Mackler, and D. Barlow. Measurement of impact acceleration: mouthpiece accelerometer versus helmet accelerometer. J. Athl. Train. 42:5–10, 2007.Google Scholar
  18. 18.
    Jadischke, R., D. C. Viano, N. Dau, A. I. King, and J. McCarthy. On the accuracy of the head impact telemetry (HIT) system used in football helmets. J. Biomech. 46:2310–2315, 2013.CrossRefGoogle Scholar
  19. 19.
    Kuo, C., L. C. Wu, B. T. Hammoor, J. F. Luck, H. C. Cutcliffe, R. C. Lynall, J. R. Kait, K. R. Campbell, J. P. Mihalik, C. R. Bass, and D. B. Camarillo. Effect of the mandible on mouthguard measurements of head kinematics. J. Biomech. 49:1845–1853, 2016.CrossRefGoogle Scholar
  20. 20.
    Lamond, L. C., J. B. Caccese, T. A. Buckley, J. Glutting, and T. W. Kaminski. Linear acceleration in direct head contact across impact type, player position, and playing scenario in collegiate women’s soccer players. J. Athl. Train. 53:115–121, 2018.CrossRefGoogle Scholar
  21. 21.
    Lightman, K. Silicon gets sporty. IEEE Spectr. 53:48–53, 2016.CrossRefGoogle Scholar
  22. 22.
    Mainwaring, L., K. M. Ferdinand Pennock, S. Mylabathula, and B. Z. Alavie. Subconcussive head impacts in sport: a systematic review of the evidence. Int. J. Psychophysiol. 132:39–54, 2018.CrossRefGoogle Scholar
  23. 23.
    Manoogian, S., D. McNeely, S. Duma, G. Brolinson, and R. Greenwald. Head acceleration is less than 10 percent of helmet acceleration in football impacts. Biomed. Sci. Instrum. 42:383–388, 2006.Google Scholar
  24. 24.
    Miller, L. E., C. Kuo, L. C. Wu, J. E. Urban, D. B. Camarillo, and J. D. Stitzel. Validation of a custom instrumented retainer form factor for measuring linear and angular head impact kinematics. J. Biomech. Eng. 140:054501, 2018.CrossRefGoogle Scholar
  25. 25.
    Miller, L., E. Pinkerton, K. Fabian, L. Wu, M. Espeland, L. Lamond, C. Miles, D. Camarillo, J. Stitzel, and J. Urban. Characterizing head impact exposure in youth female soccer with a custom-instrumented mouthpiece. Res. Sports Med. 2019. Scholar
  26. 26.
    Naunheim, R. S., P. V. Bayly, J. Standeven, J. S. Neubauer, L. M. Lewis, and G. M. Genin. Linear and angular head accelerations during heading of a soccer ball. Med. Sci. Sports Exerc. 35:1406–1412, 2003.CrossRefGoogle Scholar
  27. 27.
    Nevins, D., L. Smith, and J. Kensrud. Laboratory evaluation of wireless head impact sensor. Procedia Eng. 112:175–179, 2015.CrossRefGoogle Scholar
  28. 28.
    O’Kane, J. W. Is heading in youth soccer dangerous play? Phys. Sportsmed. 44:190–194, 2016.CrossRefGoogle Scholar
  29. 29.
    Press, J. N., and S. Rowson. Quantifying head impact exposure in collegiate women’s soccer. Clin. J. Sport Med. 27:104–110, 2017.CrossRefGoogle Scholar
  30. 30.
    Rice, S. G. Medical conditions affecting sports participation. Pediatrics 121:841–848, 2008.CrossRefGoogle Scholar
  31. 31.
    Rowson, S., J. G. Beckwith, J. J. Chu, D. S. Leonard, R. M. Greenwald, and S. M. Duma. A six degree of freedom head acceleration measurement device for use in football. J. Appl. Biomech. 27:8–14, 2011.CrossRefGoogle Scholar
  32. 32.
    Rowson, S., S. M. Duma, R. M. Greenwald, J. G. Beckwith, J. J. Chu, K. M. Guskiewicz, J. P. Mihalik, J. J. Crisco, B. J. Wilcox, T. W. McAllister, A. C. Maerlender, S. P. Broglio, B. Schnebel, S. Anderson, and P. G. Brolinson. Can helmet design reduce the risk of concussion in football? J. Neurosurg. 120:919–922, 2014.CrossRefGoogle Scholar
  33. 33.
    Self, B. P., J. Beck, D. Schill, C. Eames, T. Knox, and J. Plaga. Head accelerations during soccer heading. Eng. Sport 6:81–86, 2006.CrossRefGoogle Scholar
  34. 34.
    Siegmund, G. P., K. M. Guskiewicz, S. W. Marshall, A. L. DeMarco, and S. J. Bonin. Laboratory validation of two wearable sensor systems for measuring head impact severity in football players. Ann. Biomed. Eng. 44:1257–1274, 2016.CrossRefGoogle Scholar
  35. 35.
    Stewart, W. F., N. Kim, C. S. Ifrah, R. B. Lipton, T. A. Bachrach, M. E. Zimmerman, M. Kim, and M. L. Lipton. Symptoms from repeated intentional and unintentional head impact in soccer players. Neurology 88:901–908, 2017.CrossRefGoogle Scholar
  36. 36.
    Triax Technologies. Laboratory Validation of the SIM-G Head Impact Sensor. Norwalk, CN: Triax Technologies Inc, 2014.Google Scholar
  37. 37.
    Tyson, A. M., S. M. Duma, and S. Rowson. Laboratory evaluation of low-cost wearable sensors for measuring head impacts in sports. J. Appl. Biomech. 34:320–326, 2018.CrossRefGoogle Scholar
  38. 38.
    Wu, L. C., K. Laksari, C. Kuo, J. F. Luck, S. Kleiven, C. R. Dale’ Bass, and D. B. Camarillo. Bandwidth and sample rate requirements for wearable head impact sensors. J. Biomech. 49:2918–2924, 2016.CrossRefGoogle Scholar
  39. 39.
    Wu, L. C., V. Nangia, K. Bui, B. Hammoor, M. Kurt, F. Hernandez, C. Kuo, and D. B. Camarillo. In vivo evaluation of wearable head impact sensors. Ann. Biomed. Eng. 44:1234–1245, 2016.CrossRefGoogle Scholar
  40. 40.
    Wu, L. C., L. Zarnescu, V. Nangia, B. Cam, and D. B. Camarillo. A head impact detection system using SVM classification and proximity sensing in an instrumented mouthguard. IEEE Trans. Biomed. Eng. 61:2659–2668, 2014.CrossRefGoogle Scholar
  41. 41.
    Yang, Y. T., and C. M. Baugh. US youth soccer concussion policy: heading in the right direction. JAMA Pediatr. 170:413–414, 2016.CrossRefGoogle Scholar
  42. 42.
    Yoganandan, N., F. A. Pintar, J. Zhang, and J. L. Baisden. Physical properties of the human head: mass, center of gravity and moment of inertia. J. Biomech. 42:1177–1192, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Andrea M. Rich
    • 1
    • 2
  • Tanner M. Filben
    • 1
    • 2
  • Logan E. Miller
    • 1
    • 2
  • Brian T. Tomblin
    • 1
    • 2
  • Aaron R. Van Gorkom
    • 1
    • 2
  • Michael A. Hurst
    • 4
  • Ryan T. Barnard
    • 1
    • 3
  • Dena S. Kohn
    • 1
  • Jillian E. Urban
    • 1
    • 2
  • Joel D. Stitzel
    • 1
    • 2
    Email author
  1. 1.Department of Biomedical EngineeringWake Forest School of MedicineWinston-SalemUSA
  2. 2.School of Biomedical Engineering and SciencesVirginia Tech – Wake Forest UniversityWinston-SalemUSA
  3. 3.Department of Biostatistics and Data ScienceWake Forest School of MedicineWinston-SalemUSA
  4. 4.Hurst Dental LaboratoryWinston-SalemUSA

Personalised recommendations