Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 11, pp 2271–2283 | Cite as

In Vitro Study of Particle Transport in Successively Bifurcating Vessels

  • Omid Amili
  • Jafar Golzarian
  • Filippo ColettiEmail author
Article
  • 106 Downloads

Abstract

To reach a predictive understanding of how particles travel through bifurcating vessels is of paramount importance in many biomedical settings, including embolization, thromboembolism, and drug delivery. Here we utilize an in vitro model in which solid particles are injected through a rigid vessel that symmetrically bifurcates in successive branching generations. The geometric proportion and fluid dynamics parameters are relevant to the liver embolization. The volumetric flow field is reconstructed via phase-contrast magnetic resonance imaging, from which the particle trajectories are calculated for a range of size and density using the particle equation of motion. The method is validated by directly tracking the injected particles via optical imaging. The results indicate that, opposite to the common assumption, the particles distribution is fundamentally different from the volumetric flow partition. In fact, the amount of delivered particles vary substantially between adjacent branches even when the flow is uniformly distributed. This is not due to the inertia of the particles, nor to gravity. The particle distribution is rather rooted in their different pathways, which in turn are linked to their release origin along the main vessel cross-section. Therefore, the tree geometry and the associated flow streamlines are the prime determinant of the particle fate, while local changes of volumetric flow rate to selected branches do not generally produce proportional changes of particle delivery.

Keywords

Particle embolization Bifurcating vessels PC-MRI Lagrangian particle tracking 

Notes

Acknowledgments

The authors would like to thank Sean Moen for his assistance in conducting MRI experiments and fruitful discussions on the matter. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing the computational resources required for this work. This work was partly supported by the University of Minnesota Department of Radiology.

Conflict of interest

The authors do not have conflicts of interest relevant to this manuscript.

References

  1. 1.
    Amili, O., R. MacIver, and F. Coletti. MRI-based flow field and Lagrangian particle tracking from a left ventricular assist device. ASME J. Biomech. Eng. 2019. In press.Google Scholar
  2. 2.
    Amili, O., D. Schiavazzi, S. Moen, B. Jagadeesan, P.-F. Van De Moortele, and F. Coletti. Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI. PLoS ONE 13:e0188323, 2018.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Aramburu, J., R. Antón, A. Rivas, J. Ramos, B. Sangro, and J. Bilbao. Computational assessment of the effects of the catheter type on particle-hemodynamics during liver radioembolization. J. Biomech. 49:3705–3713, 2016.PubMedGoogle Scholar
  4. 4.
    Aramburu, J., R. Antón, A. Rivas, J. Ramos, B. Sangro, and J. Bilbao. The role of angled-tip microcatheter and microsphere injection velocity in liver radioembolization: A computational particle-hemodynamics study. Int. J. Numer. Methods Biomed. Eng. 33:e2895, 2017.Google Scholar
  5. 5.
    Balachandar, S. A scaling analysis for point-particle approaches to turbulent multiphase flows. Int. J. Multiph. Flow 35:801–810, 2009.Google Scholar
  6. 6.
    Balachandar, S. and J. Eaton. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42:111–133, 2010.Google Scholar
  7. 7.
    Basciano, C., C. Kleinstreuer, A. Kennedy, W. Dezarn, and E. Childress. Computer modeling of controlled microsphere release and targeting in a representative hepatic artery system. Ann. Biomed. Eng. 38:1862–1879, 2010.PubMedGoogle Scholar
  8. 8.
    Born, S., M. Markl, M. Gutberlet, and G. Scheuermann. Illustrative visualization of cardiac and aortic blood flow from 4D MRI data. 2013, pp. 129–136.Google Scholar
  9. 9.
    Bray, F., J. Ferlay, I. Soerjomataram, R. Siegel, L. Torre, and A. Jemal. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68:394–424, 2018.PubMedGoogle Scholar
  10. 10.
    Bushi, D., Y. Grad, S. Einav, O. Yodfat, B. Nishri, and D. Tanne. Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model. Stroke 36:2696–2700, 2005.PubMedGoogle Scholar
  11. 11.
    Caine, M., M. McCafferty, S. McGhee, P. Garcia, W. Mullett, X. Zhang, M. Hill, M. Dreher, and A. Lewis. Impact of yttrium-90 microsphere density, flow dynamics, and administration technique on spatial distribution: analysis using an in vitro model. J. Vasc. Interv. Radiol. 28:260.e2–268.e2, 2017.Google Scholar
  12. 12.
    Carr, I., N. Nemoto, R. Schwartz, and S. Shadden. Size-dependent predilections of cardiogenic embolic transport. Am. J. Physiol. Heart Circ. Physiol. 305:H732–H739, 2013.PubMedGoogle Scholar
  13. 13.
    Cebral, J., M. Castro, S. Appanaboyina, C. Putman, D. Millan, and A. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24:457–467, 2005.PubMedGoogle Scholar
  14. 14.
    Chen, J. and X.-Y. Lu. Numerical investigation of the non-newtonian pulsatile blood flow in a bifurcation model with a non-planar branch. J. Biomech. 39:818–832, 2006.PubMedGoogle Scholar
  15. 15.
    Childress, E. and C. Kleinstreuer. Impact of fluid–structure interaction on direct tumor-targeting in a representative hepatic artery system. Ann. Biomed. Eng. 42:461–474, 2014.PubMedGoogle Scholar
  16. 16.
    Chung, E., J. Hague, M.-A. Chanrion, K. Ramnarine, E. Katsogridakis, and D. Evans. Embolus trajectory through a physical replica of the major cerebral arteries. Stroke 41:647–652, 2010.PubMedGoogle Scholar
  17. 17.
    Comer, J., C. Kleinstreuer, and Z. Zhang. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J. Fluid Mech. 435:25–54, 2001.Google Scholar
  18. 18.
    Discetti, S. and F. Coletti. Volumetric velocimetry for fluid flows. Meas. Sci. Technol. 29:042001, 2018.Google Scholar
  19. 19.
    Elkins, C. and M. Alley. Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp. Fluids 43:823–858, 2007.Google Scholar
  20. 20.
    Erturk, M., X. Wu, Y. Eryaman, P.-F. Van de Moortele, E. Auerbach, R. Lagore, L. DelaBarre, J. Vaughan, K. Uğurbil, G. Adriany, and G. Metzger. Toward imaging the body at 10.5 tesla. Magn. Reson. Med. 77:434–443, 2017.PubMedGoogle Scholar
  21. 21.
    Gijsen, F., F. Van De Vosse, and J. Janssen. The influence of the non-newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J. Biomech. 32:601–608, 1999.PubMedGoogle Scholar
  22. 22.
    Glenny, R. Emergence of matched airway and vascular trees from fractal rules. J. Appl. Physiol. 110:1119–1129, 2011.PubMedGoogle Scholar
  23. 23.
    Golzarian, J., M. Sapoval, S. Kundu, D. Hunter, E. Brountzos, J.-F. Geschwind, T. Murphy, J. Spies, M. Wallace, T. de Baere, and J. Cardella. Guidelines for peripheral and visceral vascular embolization training. joint writing groups of the standards of practice committees for the society of interventional radiology (sir), cardiovascular and interventional radiological society of europe (cirse), and canadian interventional radiology association (cira). J. Vasc. Interv. Radiol. 21:436–441, 2010.PubMedGoogle Scholar
  24. 24.
    Gondret, P., M. Lance, and L. Petit. Bouncing motion of spherical particles in fluids. Phys. Fluids 14:643–652, 2002.Google Scholar
  25. 25.
    Guha, A. Transport and deposition of particles in turbulent and laminar flow. Annu. Rev. Fluid Mech. 40:311–341, 2008.Google Scholar
  26. 26.
    Hartke, J., M. Johnson, and M. Ghabril. The diagnosis and treatment of hepatocellular carcinoma. Semin. Diagn. Pathol. 34:153–159, 2017.PubMedGoogle Scholar
  27. 27.
    Hassan, Y., T. Blanchat, and C. Seeley Jr. PIV flow visualisation using particle tracking techniques. Meas. Sci. Technol. 3:633–642, 1992.Google Scholar
  28. 28.
    Hübner, G., N. Steudel, G. Kleber, C. Behrmann, E. Lotterer, and W. Fleig. Hepatic arterial blood flow velocities: assessment by transcutaneous and intravascular doppler sonography. J. Hepatol. 32:893–899, 2000.PubMedGoogle Scholar
  29. 29.
    Ishigami, K., Y. Zhang, S. Rayhill, D. Katz, and A. Stolpen. Does variant hepatic artery anatomy in a liver transplant recipient increase the risk of hepatic artery complications after transplantation? Am. J. Roentgenol. 183:1577–1584, 2004.Google Scholar
  30. 30.
    Jalal, S., A. Nemes, T. Van de Moortele, S. Schmitter, and F. Coletti. Three-dimensional inspiratory flow in a double bifurcation airway model. Exp. Fluids 57:148, 2016.Google Scholar
  31. 31.
    Jalal, S., T. Van De Moortele, A. Nemes, O. Amili, and F. Coletti. Three-dimensional steady and oscillatory flow in a double bifurcation airway model. Phys. Rev. Fluids 3:103101, 2018.Google Scholar
  32. 32.
    Kassab, G. Scaling laws of vascular trees: of form and function. Am. J. Physiol. Heart Circ. Physiol. 290:H894–H903, 2006.PubMedGoogle Scholar
  33. 33.
    Kennedy, A., C. Kleinstreuer, C. Basciano, and W. Dezarn. Computer modeling of yttrium-90-microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int. J. Radiat. Oncol. Biol. Phys. 76:631–637, 2010.PubMedGoogle Scholar
  34. 34.
    Kleinstreuer, C., C. Basciano, E. Childress, and A. Kennedy. A new catheter for tumor targeting with radioactive microspheres in representative hepatic artery systems part i: Impact of catheter presence on local blood flow and microsphere delivery. J. Biomech. Eng. 134:51004, 2012.PubMedGoogle Scholar
  35. 35.
    Kleinstreuer, C., Z. Zhang, and J. Donohue. Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng. 10:195–220, 2008.PubMedGoogle Scholar
  36. 36.
    Ku, D. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.Google Scholar
  37. 37.
    Lambert, A., P. O’Shaughnessy, M. Tawhai, E. Hoffman, and C.-L. Lin. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci. Technol. 45:11–25, 2011.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lin, C.-L., M. Tawhai, and E. Hoffman. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs. Wiley Interdiscipl. Rev. 5:643–655, 2013.Google Scholar
  39. 39.
    Markl, M., A. Frydrychowicz, S. Kozerke, M. Hope, and O. Wieben. 4D flow MRI. J. Magn. Reson. Imaging 36:1015–1036, 2012.PubMedGoogle Scholar
  40. 40.
    Mauroy, B., M. Filoche, J. Andrade, and B. Sapoval. Interplay between geometry and flow distribution in an airway tree. Phys. Rev. Lett. 90:4, 2003.Google Scholar
  41. 41.
    Maxey, M. and J. Riley. Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26:883–889, 1983.Google Scholar
  42. 42.
    Mukherjee, D., N. Jani, K. Selvaganesan, C. Weng, and S. Shadden. Computational assessment of the relation between embolism source and embolus distribution to the circle of willis for improved understanding of stroke etiology. J. Biomech. Eng. 138, 081008, 2016.Google Scholar
  43. 43.
    Mukherjee, D., J. Padilla, and S. Shadden. Numerical investigation of fluid-particle interactions for embolic stroke. Theor. Comput. Fluid Dyn. 30:23–39, 2016.Google Scholar
  44. 44.
    Ohmi, K. and H.-Y. Li. Particle-tracking velocimetry with new algorithms. Meas. Sci. Technol. 11:603–616, 2000.Google Scholar
  45. 45.
    Petersen, A., L. Baker, and F. Coletti. Experimental study of inertial particles clustering and settling in homogeneous turbulence. J. Fluid Mech. 864:925–970, 2019.Google Scholar
  46. 46.
    Richards, A., C. Kleinstreuer, A. Kennedy, E. Childress, and G. Buckner. Experimental microsphere targeting in a representative hepatic artery system. IEEE Trans. Biomed. Eng. 59:198–204, 2012.PubMedGoogle Scholar
  47. 47.
    Saffman, P. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:385–400, 1965.Google Scholar
  48. 48.
    Schnell, S., S. Ansari, C. Wu, J. Garcia, I. Murphy, O. Rahman, A. Rahsepar, M. Aristova, J. Collins, J. Carr, and M. Markl. Accelerated dual-venc 4D flow MRI for neurovascular applications. J. Magn. Reson. Imaging 46: 102–114, 2017.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Segré, G. and A. Silberberg. Behaviour of macroscopic rigid spheres in poiseuille flow: Part 1. Determination of local concentration by statistical analysis of particle passages through crossed light beams. J. Fluid Mech. 14:115–135, 1962.Google Scholar
  50. 50.
    Segré, G. and A. Silberberg. Behaviour of macroscopic rigid spheres in poiseuille flow: Part 2. Experimental results and interpretation. J. Fluid Mech. 14:136–157, 1962.Google Scholar
  51. 51.
    Shadden, S. and A. Arzani. Lagrangian postprocessing of computational hemodynamics. Ann. Biomed. Eng. 43:41–58, 2014.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Taylor, K., P. Burns, J. Woodcock, and P. Wells. Blood flow in deep abdominal and pelvic vessels: ultrasonic pulsed-doppler analysis. Radiology 154:487–493, 1985.PubMedGoogle Scholar
  53. 53.
    Töger, J., M. Kanski, M. Carlsson, S. Kovács, G. Söderlind, H. Arheden, and E. Heiberg. Vortex ring formation in the left ventricle of the heart: analysis by 4D flow MRI and lagrangian coherent structures. Ann. Biomed. Eng. 40:2652–2662, 2012.PubMedGoogle Scholar
  54. 54.
    Van De Moortele, T., C. Wendt, and F. Coletti. Morphological and functional properties of the conducting human airways investigated by in vivo computed tomography and in vitro MRI. J. Appl. Physiol. 124:400–413, 2018.PubMedGoogle Scholar
  55. 55.
    Van Den Hoven, A., M. Lam, S. Jernigan, M. Van Den Bosch, and G. Buckner. Innovation in catheter design for intra-arterial liver cancer treatments results in favorable particle-fluid dynamics. J. Exp. Clin. Cancer Res. 34:74. 2015.PubMedPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of RadiologyUniversity of MinnesotaMinneapolisUSA
  3. 3.St. Anthony Falls LaboratoryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations