Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 11, pp 2241–2257 | Cite as

Comprehensive In Vitro Study of the Flow Past Two Transcatheter Aortic Valves: Comparison with a Severe Stenotic Case

  • Pascal CorsoEmail author
  • Utku Gülan
  • Nicholas Cohrs
  • Wendelin Jan Stark
  • Firat Duru
  • Markus Holzner
Article
  • 269 Downloads

Abstract

We investigate the flow past two transcatheter aortic valves (TAVs) and one severely calcified valve in an anatomically realistic aorta geometry to evaluate the ability of the TAVs to establish a healthier aortic flow compared to a diseased case. Velocity measurements of pulsatile flow are carried out using the 3D-particle tracking velocimetry technique. We present a novel approach based on the Smagorinsky model to assess the important subvoxel-scale (here smaller than 750 \(\mu\)m) shear stress contribution that is usually unavailable in experiments. Both TAV models feature a small retrograde flow of about 5% of the stroke volume and a lower number of coherent vortical structures. Turbulence past the TAVs is strongly suppressed as evidenced by the lower levels of turbulent kinetic energy even though the newer generation TAV performs better than the old one. Also lysis indices are substantially reduced in both models. The new generation TAV displays a slightly higher risk for thrombogenicity due to longer exposure times. We anticipate that our new approach to include turbulence and shear stress related quantities may help to validate the design of cardiovascular devices.

Keywords

3D-particle tracking velocimetry Transcatheter aortic valve Retrograde flow Turbulence Shear stress Blood damage Coherent vortical structures 

Abbreviations

3D-PTV

Three-dimensional particle tracking velocimetry

AS

Aortic stenosis

AscA

Ascending aorta

BDI

Blood damage index

BMHV

Bileaflet mechanical heart valve

BTHV

Bioprosthetic trileaflet heart valve

CO

Cardiac output

CVS

Coherent vortical structure

DNS

Direct numerical simulation

LES

Large-eddy simulation

LNH

Local normalised helicity

LVEF

Left ventricular ejection fraction

MKE

Mean kinetic energy

MR

Magnetic resonance

RTV

Room temperature vulcanising

SAV

Surgical aortic valve

SAVR

Surgical aortic valve replacement

TAV

Transcatheter aortic valve

TAVI

Transcatheter aortic valve implantation

TKE

Turbulent kinetic energy

VAD

Ventricular assist device

Notes

Acknowledgments

This work was supported by the Swiss National Science Foundation under Grant No. CR23I3-159686. Special thanks to Michael Arnold, technician at ETH Zürich, for his contribution as to the computer-aided design of the moulds as part of the manufacturing process of the aorta model.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Alemu, Y., Bluestein D. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif Organs. 31(9):677–688, 2007.CrossRefGoogle Scholar
  2. 2.
    Astorino, M., Gerbeau, J.-F., Pantz, O., Traor, K.-F. Fluid-structure interaction and multi-body contact: application to aortic valves. Comp. Methods Appl. Mech. Eng. 198(45–46):3603–3612, 2009.CrossRefGoogle Scholar
  3. 3.
    Bach, D. S., Siao, D., Girard, S. E., Duvernoy, C., McCallister, B. D. Jr, Gualano, S. K. Evaluation of patients with severe symptomatic aortic stenosis who do not undergo aortic valve replacement: the potential role of subjectively overestimated operative risk. Circ. Cardiovasc. Qual. Outcomes. 2(6):533–539, 2009.CrossRefGoogle Scholar
  4. 4.
    Baumgartner, H., Falk, V., Bax, J. J., De Bonis, M., Hamm, C., Holm, P. J., Lung, B., Lancellotti, P., Lansac, E., Rodriguez Muoz, D., Rosenhek, R., Sjgren, J., Tornos Mas, P., Vahanian, A., Walther, T., Wendler, O., Windecker, S., Zamorano, J. L. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 38(36):2739–2791, 2017.CrossRefGoogle Scholar
  5. 5.
    Bellofiore, A., Quinlan, N. J. High-Resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann. Biomed. Eng. 39(9):2417–2429, 2011.CrossRefGoogle Scholar
  6. 6.
    Chen, Q., Zhong, Q. Comparison of vortex identification criteria for planar velocity fields. Phys. Fluids 27(8):85–101, 2015.Google Scholar
  7. 7.
    Chiastra, C., Gallo, D., Tasso, P., Iannaccone, F., Migliavacca, F., Wentzel, J. J., Morbiducci, U. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: a computational exploration of the hemodynamic risk. J Biomech. 14;58:79–88, 2017.CrossRefGoogle Scholar
  8. 8.
    Clavel, M. A., Webb, J.G., Rods-Cabau, J., Masson, J. B., Dumont, E., De Larochellire, R., Doyle, D., Bergeron, S., Baumgartner, H., Burwash, I. G., Dumesnil, J. G., Mundigler, G., Moss, R., Kempny, A., Bagur, R., Bergler-Klein, J., Gurvitch, R., Mathieu, P., Pibarot, P. Comparison between transcatheter and surgical prosthetic valve implantation in patients with severe aortic stenosis and reduced left ventricular ejection fraction. Circulation 122(19):1928–1936, 2010.CrossRefGoogle Scholar
  9. 9.
    Cohrs, N. H., Petrou, A., Loepfe, M. A soft total artificial heartfirst concept evaluation on a hybrid mock circulation. Artif. Organs 41:948–958, 2017.CrossRefGoogle Scholar
  10. 10.
    Dual, S. A., Zimmermann, J. M., Neuenschwander, J. Ultrasonic sensor concept to fit a ventricular assist device cannula evaluated using geometrically accurate heart phantoms. Artif. Organs 1–11, 2018.Google Scholar
  11. 11.
    Ducci, A., Pirisi, F., Tzamtzis, S., Burriesci, G. Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: an in vitro study. J. Biomech. 49(16):4080–4089, 2016.CrossRefGoogle Scholar
  12. 12.
    Dumont, K., Vierendeels, J., Kaminsky, R., van Nooten, G., Verdonck, P., Bluestein, D. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129(4):558–65, 2007.CrossRefGoogle Scholar
  13. 13.
    Formaggia, L., Quarteroni, A., Veneziani, A. Cardiovascular Mathematics—Modeling and Simulation of the Circulatory System. Milano: Springer, 2009, p. 522.Google Scholar
  14. 14.
    Fureby, C., Tabor, G., Weller, H. G., Gosman, A. D. A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5):1416, 1997.CrossRefGoogle Scholar
  15. 15.
    Ge, L., Dasi, L. P., Sotiropoulos, F., Yoganathan, A. P. Characterisation of hemodynamic forces induced by mechanical heart valves: reynolds vs viscous stresses. Ann. Biomed. Eng. 36(2):276–297, 2008.CrossRefGoogle Scholar
  16. 16.
    Ge, L., Sotiropoulos, F. Direction and magnitude of blood flow shear stresses on the leaflets of aortic valves: is there a link with valve calcification? J. Biomech. Eng. 2010.  https://doi.org/10.1115/1.4000162.CrossRefPubMedGoogle Scholar
  17. 17.
    Giersiepen, M., Wurzinger L. J., Opitz R., Reul H. Estimation of shear stress-related blood damage in heart valve prostheses—in vitro comparison of 25 aortic valves. Int. J. Artif. Organs. 13(5):300–306, 1990.CrossRefGoogle Scholar
  18. 18.
    Giese, D., Weiss, K., Baessler, B., Madershahian, N., Choi, Y. H., Maintz, D., Bunck, A. C. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses. MAGMA. 31(1):165–172, 2018.CrossRefGoogle Scholar
  19. 19.
    Goubergrits, L., Affeld, K. Numerical estimation of blood damage in artificial organs. Artif Organs. 28(5):499–507, 2004.CrossRefGoogle Scholar
  20. 20.
    Gülan, U., Lüthi, B., Holzner, M., Liberzon, A., Tsinober, A., Kinzelbach, W. Experimental investigation of the influence of the aortic stiffness on hemodynamics in the ascending aorta. IEEE J. Biomed. Health Inform. 18(6):1775–1780, 2014.CrossRefGoogle Scholar
  21. 21.
    Gusenbauer, M., Tothova, R., Mazza, G., Brandl, M., Schrefl, T., Jancigova, I., Cimrak, I. Cell damage index as computational indicator for cell activation and damage. Artif. Organs 42(7):746–755, 2018.CrossRefGoogle Scholar
  22. 22.
    Grigioni, M., Morbiducci, U., D’Avenio, G., Di Benedetto, G., Del Gaudio, C. A novel formulation for blood trauma prediction by a modified power-law mathematical model. Biomech. Model Mechanobiol. 4(4):249–260, 2005.CrossRefGoogle Scholar
  23. 23.
    Hasler, D., Obrist, D. Three-dimensional flow structures past a bio-prosthetic valve in an in-vitro model of the aortic root. PLoS ONE 2018.  https://doi.org/10.1371/journal.pone.0194384.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hatoum, H., Yousefi, A., Lilly, S., Maureira, P., Crestanello, J., Dasi, L. P. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156(5):1837–1848, 2018.CrossRefGoogle Scholar
  25. 25.
    Hund, S. J., Antaki, J. F., Massoudi, M. On the representation of turbulent stresses for computing blood damage. Int. J. Eng. Sci. 48(11):1325–1331, 2010.CrossRefGoogle Scholar
  26. 26.
    Kandail, H. S., Trivedi, S. D., Shaikh, A. C., Bajwa, T. K., O’Hair, D. P., Jahangir, A., LaDisa, J. F. Jr. Impact of annular and supra-annular CoreValve deployment locations on aortic and coronary artery hemodynamics. J. Mech. Behav. Biomed. Mater. 86:131–142, 2018.CrossRefGoogle Scholar
  27. 27.
    Kilner, P. J., Yang, G. Z., Mohiaddin, R. H., Firmin, D. N., Longmore, D .B. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation 88(5 Pt 1):2235–2247, 1993.CrossRefGoogle Scholar
  28. 28.
    Luraghi, G., Wu, W., De Gaetano, F., Rodriguez Matas, J. F., Moggridge, G. D., Serrani, M., Stasiak, J., Costantino, M. L., Migliavacca, F. Evaluation of an aortic valve prosthesis: fluid-structure interaction or structural simulation? J. Biomech. 58:45–51, 2017.CrossRefGoogle Scholar
  29. 29.
    Maas, H. G., Gruen, A., Papantoniou, D. Particle tracking velocimetry in three-dimensional flows Part I Photogrammetric determination of particle coordinates. Exp. Fluids 15:133–146, 1993.CrossRefGoogle Scholar
  30. 30.
    Malik, N. A., Dracos, T., Papantoniou, D. Particle tracking velocimetry in three-dimensional flows. Part II: Particle tracking. Exp. Fluids 15:279–294, 1993.CrossRefGoogle Scholar
  31. 31.
    Markl, M., Draney, M. T., Miller, D. C., Levin, J. M., Williamson, E. E., Pelc, N. J., Liang, D. H., Herfkens, R. J. Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valve-sparing aortic root replacement. J. Thorac. Cardiovasc. Surg. 130(2):456–463, 2005.CrossRefGoogle Scholar
  32. 32.
    Morbiducci, U., Ponzini, R., Rizzo, G., Cadioli, M., Esposito, A., De Cobelli, F., Del Maschio, A., Montevecchi, F. M., Redaelli, A. In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast magnetic resonance imaging. Ann. Biomed. Eng. 37(3):516–531, 2009.CrossRefGoogle Scholar
  33. 33.
    Nobili, M., Sheriff, J., Morbiducci, U., Redaelli, A., Bluestein, D. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54(1):64–72, 2008.CrossRefGoogle Scholar
  34. 34.
    Pal, A., Anupindi, K., Delorme, Y., Ghaisas, N., Shetty, D. A., Frankel, S. H. Large eddy simulation of transitional flow in an idealized stenotic blood vessel: evaluation of subgrid scale models. J. Biomech. Eng. 2014.  https://doi.org/10.1115/1.4027610.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Quinlan, J. M., Dooley, P. N. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8):1347–1356, 2007.CrossRefGoogle Scholar
  36. 36.
    Raghav, V., Okafor, I., Quach, M., Dang, L., Marquez, S., Yoganathan, A. P. Long-term durability of Carpentier-Edwards Magna ease valve: a one billion cycle in vitro study. Ann. Thorac. Surg. 101(5):1759–1765, 2016.CrossRefGoogle Scholar
  37. 37.
    Smadi, O., Hassan, I., Pibarot, P., Kadem, L. Numerical and experimental investigations of pulsatile blood flow pattern through a dysfunctional mechanical heart valve. J. Biomech. 43(8):1565–1572, 2010.CrossRefGoogle Scholar
  38. 38.
    Sotiropoulos, F., Le, T. B., Gilmanov, A. Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48:259–283, 2016.CrossRefGoogle Scholar
  39. 39.
    Spedding, P. L., Benard, E.,McNally, G. M. Fluid flow through 90 degree bends. Dev. Chem. Eng. Miner. Process. 12(1/2), 107–128, 2004.Google Scholar
  40. 40.
    Tily, R., Brace, C. J. A study of natural neighbour interpolation and its application to automotive engine test data. Proc. Inst. Mech. Eng. Part D 220(7):1003–1017, 2016.CrossRefGoogle Scholar
  41. 41.
    Trauzeddel, R. F., Lbe, U., Barker, A. J., Gelsinger, C., Butter, C., Markl, M., Schulz-Menger, J., von Knobelsdorff-Brenkenhoff, F. Blood flow characteristics in the ascending aorta after TAVI compared to surgical aortic valve replacement. Int. J. Cardiovasc. 32:461–467, 2016.CrossRefGoogle Scholar
  42. 42.
    Wells, S. M., Adamson, S. L., Langille, B. L., Lee, J. M. Thermomechanical analysis of collagen crosslinking in the developing ovine thoracic aorta. Biorheology 35(6):399–414, 1998.CrossRefGoogle Scholar
  43. 43.
    Wu, W., Pott, D., Mazza, B., Sironi, T., Dordoni, E., Chiastra, C., Petrini, L., Pennati, G., Dubini, G., Steinseifer, U., Sonntag, S., Kuetting, M., Migliavacca, F. Fluid–structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44(2):590–603, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Institute for Environmental EngineeringSwiss Institute of Technology in ZurichZurichSwitzerland
  2. 2.Functional Materials LaboratorySwiss Institute of Technology in ZurichZurichSwitzerland
  3. 3.Department of CardiologyUniversity Heart CenterZurichSwitzerland

Personalised recommendations