Advertisement

DC Electric Fields Induce Perpendicular Alignment and Enhanced Migration in Schwann Cell Cultures

  • Spencer J. Bunn
  • Alexander Lai
  • Jianming LiEmail author
Article

Abstract

Schwann cells (SCs) are PNS glia that play numerous support functions including myelination of axons. After PNS injury, SCs facilitate regeneration by phagocytosing cellular debris and providing physical and biochemical cues to guide axon growth. This reparative phenotype suggests SCs could be critical cellular targets for enhancing nerve regeneration. One method for altering cell morphology and motility is the application of direct current (DC) electric fields (EFs). Endogenous EFs have physiologic relevance during embryogenesis and serve as guidance and polarization cues. While much literature exists on EFs and CNS and PNS neurons, the effects of EFs on SCs have not been extensively studied. In this work, cell alignment, migration, and morphology of rat SCs were measured in response to several EF stimulation regimes including constant DC, 50% duty cycle DC and oscillating DC. SCs were found to re-orient perpendicular to field lines and respond to DC EFs as low as 75 mV/mm. EF exposure promoted directed migration, with travel towards the cathode at a mean rate of 7.5 µm/h. The data highlight the utility of EFs in modulating SC morphology, alignment and migration. Results may have implications for using EFs to attract and realign SCs at the site of PNS trauma.

Keywords

Galvanotaxis Electrotaxis Peripheral nerve repair Voltage gradient Bands of Bungner 

Notes

Acknowledgments

This study was completed at the Center for Paralysis Research with funding provided by the State of Indiana. The authors thank Megan Saenger and Bhavani Gopalakrishnan for their assistance with cell culture.

Supplementary material

10439_2019_2259_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb).
10439_2019_2259_MOESM2_ESM.mp4 (23.6 mb)
Supplementary material 2 (MP4 24145 kb).
10439_2019_2259_MOESM3_ESM.mp4 (24.2 mb)
Supplementary material 3 (MP4 24744 kb).
10439_2019_2259_MOESM4_ESM.mp4 (23.1 mb)
Supplementary material 4 (MP4 23630 kb).

References

  1. 1.
    Alexander, J. K., B. Fuss, and R. J. Colello. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2:93–103, 2006.CrossRefGoogle Scholar
  2. 2.
    Arthur-Farraj, P. J., M. Latouche, D. K. Wilton, S. Quintes, E. Chabrol, A. Banerjee, A. Woodhoo, B. Jenkins, M. Rahman, M. Turmaine, G. K. Wicher, R. Mitter, L. Greensmith, A. Behrens, G. Raivich, R. Mirsky, and K. R. Jessen. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron 75:633–647, 2012.CrossRefGoogle Scholar
  3. 3.
    Bonazzi, D., and N. Minc. Dissecting the molecular mechanisms of electrotactic effects. Adv. Wound Care 3:139–148, 2014.CrossRefGoogle Scholar
  4. 4.
    Borgens, R. B. Electrically mediated regeneration and guidance of adult mammalian spinal axons into polymeric channels. Neuroscience 91:251–264, 1999.CrossRefGoogle Scholar
  5. 5.
    Borgens, R. B., K. R. Robinson, J. W. Vanable, and M. E. McGinnis. Artificially controlling axonal regeneration and development by applied electric fields. In: Electric Fields in Vertebrate Repair. New York: Alan R. Liss, 1989, pp. 164–165.Google Scholar
  6. 6.
    Borgens, R. B., R. Shi, T. J. Mohr, and C. B. Jaeger. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128:41–49, 1994.CrossRefGoogle Scholar
  7. 7.
    Borgens, R., J. Toombs, A. Blight, M. Mcginnis, M. Bauer, W. Widmer, and J. Cook. Effects of applied electric-fields on clinical cases of complete paraplegia in dogs. Restor. Neurol. Neurosci. 5:305–322, 1993.Google Scholar
  8. 8.
    Borgens, R. B., J. P. Toombs, G. Breur, W. R. Widmer, D. Waters, A. M. Harbath, P. March, and L. G. Adams. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J. Neurotrauma 16:639–657, 1999.CrossRefGoogle Scholar
  9. 9.
    Brown, M. J., and L. M. Loew. Electric field directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. J. Cell Biol. 127:117–128, 1994.CrossRefGoogle Scholar
  10. 10.
    Bunge, R. P. The role of the Schwann cell in trophic support and regeneration. J. Neurol. 242:S19–S21, 1994.CrossRefGoogle Scholar
  11. 11.
    Bunge, R. P., and M. B. Bunge. Interrelationship between Schwann cell function and extracellular matrix production. Trends Neurosci. 6:499–505, 1983.CrossRefGoogle Scholar
  12. 12.
    Chang, H. F., Y. S. Lee, T. K. Tan, and J. Y. Cheng. Pulsed DC electric field-induced differentiation of cortical neural precursor cells. PLoS ONE 11:e0158133, 2016.CrossRefGoogle Scholar
  13. 13.
    Cooper, M. S., and R. E. Keller. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc. Natl Acad. Sci. U.S.A. 81:160–164, 1984.CrossRefGoogle Scholar
  14. 14.
    Hall, S. M. Regeneration in cellular and acellular autografts in the peripheral nervous system. Neuropathol. Appl. Neurobiol. 12:27–46, 1986.CrossRefGoogle Scholar
  15. 15.
    Hall, S. M. The effect of inhibiting Schwann cell mitosis on the re-innervation of acellular autografts in the peripheral nervous system of the mouse. Neuropathol. Appl. Neurobiol. 12:401–414, 1986.CrossRefGoogle Scholar
  16. 16.
    Huang, Y. J., J. Samorajski, R. Kreimer, and P. C. Searson. The influence of electric field and confinement on cell motility. PLoS ONE 8:e59447, 2013.CrossRefGoogle Scholar
  17. 17.
    Jaffe, L. F. The role of ionic currents in establishing developmental pattern. Philos. Trans. R. Soc. Lond. B Biol. Sci. 295:553–566, 1981.CrossRefGoogle Scholar
  18. 18.
    Jessen, K. R., and R. Mirsky. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 594:3521–3531, 2016.CrossRefGoogle Scholar
  19. 19.
    Koppes, A. N., A. L. Nordberg, G. Paolillo, N. Goodsell, H. Darwish, L. Zhang, and D. M. Thompson. Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng. Part A 20:494–506, 2013.Google Scholar
  20. 20.
    Koppes, A. N., A. M. Seggio, and D. M. Thompson. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J. Neural Eng. 8:1–13, 2011.CrossRefGoogle Scholar
  21. 21.
    Li, R., Z. Liu, Y. Pan, L. Chen, Z. Zhang, and L. Lu. Peripheral nerve injuries treatment: a systematic review. Cell Biochem. Biophys. 68:449–454, 2014.CrossRefGoogle Scholar
  22. 22.
    Mackinnon, S. E., and A. L. Dellon. Nerve repair and nerve grafts. In: Surgery of the Peripheral Nerve, edited by S. E. Mackinnon. New York: Thieme, 1988.Google Scholar
  23. 23.
    Martin, J. R., and H. D. Webster. Mitotic Schwann cells in developing nerve: their changes in shape, fine structure, and axon relationships. Dev. Biol. 32:417–431, 1973.CrossRefGoogle Scholar
  24. 24.
    McCaig, C. D. Spinal neurite reabsorption and regrowth in vitro depend on the polarity of an applied electric field. Development 100:31–41, 1987.Google Scholar
  25. 25.
    McLaughlin, S., and M. M. Poo. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys. J. 34:85–93, 1981.CrossRefGoogle Scholar
  26. 26.
    Nuccitelli, R., and C. A. Erickson. Embryonic cell motility can be guided by physiological electric fields. Exp. Cell Res. 147:195–201, 1983.CrossRefGoogle Scholar
  27. 27.
    Orida, N., and M. Poo. Electrophorectic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature 275:31–35, 1978.CrossRefGoogle Scholar
  28. 28.
    Ozkucur, N., S. Perike, P. Sharma, and R. Funk. Persistent directional cell migration requires ion transport proteins as direction sensors and membrane potential differences in order to maintain directedness. BMC Cell Biol. 12:1–13, 2011.CrossRefGoogle Scholar
  29. 29.
    Pan, L., and R. B. Borgens. Perpendicular organization of sympathetic neurons within a required physiological voltage. Exp. Neurol. 222:161–164, 2010.CrossRefGoogle Scholar
  30. 30.
    Pan, L., and R. B. Borgens. Strict perpendicular orientation of neural crest-derived neurons in vitro is dependent on an extracellular gradient of voltage. J. Neurosci. Res. 90:1335–1346, 2012.CrossRefGoogle Scholar
  31. 31.
    Poo, M., J. W. Lam, N. Orida, and A. W. Chao. Electrophoresis and diffusion in the plane of the cell membrane. Biophys. J. 26:1–22, 1979.CrossRefGoogle Scholar
  32. 32.
    Rajnicek, A. M., N. A. R. Gow, and C. D. McCaig. Electric field-induced orientation of rat hippocampal neurons in vitro. Exp. Physiol. 77:229–232, 1992.CrossRefGoogle Scholar
  33. 33.
    Rajnicek, A. M., K. R. Robinson, and C. D. McCaig. The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge. Dev. Biol. 203:412–423, 1998.CrossRefGoogle Scholar
  34. 34.
    Seggio, A. M., A. Narayanaswamy, B. Roysam, and D. M. Thompson. Self-aligned Schwann cell monolayers demonstrate an inherent ability to direct neurite outgrowth. J. Neural Eng. 7(4):046001, 2010.CrossRefGoogle Scholar
  35. 35.
    Shapiro, S., R. Borgens, R. Pascuzzi, K. Roos, M. Groff, S. Purvines, R. B. Rodgers, S. Hagy, and P. Nelson. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J. Neurosurg. Spine 2:3–10, 2005.CrossRefGoogle Scholar
  36. 36.
    Shi, R., and R. B. Borgens. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202:101–114, 1995.CrossRefGoogle Scholar
  37. 37.
    Siemionow, M., and G. Brzezicki. Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol. 87:141–172, 2009.CrossRefGoogle Scholar
  38. 38.
    Son, Y. J., and W. J. Thompson. Schwann cell processes guide regeneration of peripheral axons. Neuron 14:125–132, 1995.CrossRefGoogle Scholar
  39. 39.
    Stump, R. F., and K. R. Robinson. Xenopus neural crest cell migration in an applied electrical field. J. Cell Biol. 97:1226–1233, 1983.CrossRefGoogle Scholar
  40. 40.
    Talat, K., S. Sayers, and N. Chauhan. Effect of applied electric field on astrocytic scar formation after spinal cord injury. In: Electricity and Magnetism in Biology and Medicine, edited by F. Bersani. Boston: Springer, 1999, pp. 887–890.Google Scholar
  41. 41.
    Yao, L., Y. Li, J. Knapp, and P. Smith. Exploration of molecular pathways mediating electric field-directed Schwann cell migration by RNA-seq. J. Cell. Physiol. 230:1515–1524, 2015.CrossRefGoogle Scholar
  42. 42.
    Yao, L., and L. Yongchao. The role of direct current electric field-guided stem cell migration in neural regeneration. Stem Cell Rev. 12:365–375, 2016.CrossRefGoogle Scholar
  43. 43.
    Zhao, M., J. V. Forrester, and C. D. McCaig. A small physiological electric field orients cell division. Proc. Natl. Acad. Sci. U.S.A. 96:4942–4946, 1999.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Center for Paralysis ResearchPurdue UniversityWest LafayetteUSA
  2. 2.Department of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Department of Basic Medical SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations