Advertisement

Microfluidics-Based Organism Isolation from Whole Blood: An Emerging Tool for Bloodstream Infection Diagnosis

  • Alison Burklund
  • John X. J. ZhangEmail author
Article
  • 81 Downloads

Abstract

The diagnosis of bloodstream infections presents numerous challenges, in part, due to the low concentration of pathogens present in the peripheral bloodstream. As an alternative to existing time-consuming, culture-based diagnostic methods for organism identification, microfluidic devices have emerged as rapid, high-throughput and integrated platforms for bacterial and fungal enrichment, detection, and characterization. This focused review serves to highlight and compare the emerging microfluidic platforms designed for the isolation of sepsis-causing pathogens from blood and suggest important areas for future research.

Keywords

Microfluidics Sepsis Infectious disease diagnostics Hematology Lab-on-a-chip 

Notes

Acknowledgments

The authors acknowledge partial financial support from the National Institute of Health (NIH) Director’s Transformative Research Award (1R01OD022910-01), and support from the Thayer School of Engineering Ph.D. Innovation Program and Holekamp Family Innovation Fellowship. We would like to acknowledge the Clinical Microbiology staff at Dartmouth Hitchcock Medical Center in Lebanon, NH for their support and access to their facility. We would also like to acknowledge the guidance of Dr. Pierre-Hugues Stefanuto and Dr. Christiaan A. Rees.

Conflict of interest

There are no personal or financial conflicts of interest to declare.

Funding

This study was funded by NIH Office of the Director (1R01OD022910-01).

References

  1. 1.
    Abdel-Hamid, I., D. Ivnitski, P. Atanasov, and E. Wilkins. Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens. Bioelectron. 14:309–316, 1999.CrossRefPubMedGoogle Scholar
  2. 2.
    Ai, Y., C. K. Sanders, and B. L. Marrone. Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal. Chem. 85:9126–9134, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alix-Panabieres, C., and K. Pantel. Challenges in circulating tumour cell research. Nat. Rev. 14:623–631, 2014.CrossRefGoogle Scholar
  4. 4.
    Altintas, Z., M. Akgun, G. Kokturk, and Y. Uludag. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron. 100:541–548, 2018.CrossRefPubMedGoogle Scholar
  5. 5.
    Altun, O., M. Almuhayawi, M. Ullberg, and V. Ozenci. Clinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J. Clin. Microbiol. 51:4130–4136, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Araz, M. K., L. Chung-Hoon, and A. Lal. Ultrasonic separation in microfluidic capillaries. In: IEEE Symposium on Ultrasonics, 2003, vol. 1061, pp. 1066–1069, 2003.Google Scholar
  7. 7.
    Au, S. H., J. Edd, A. E. Stoddard, K. H. K. Wong, F. Fachin, S. Maheswaran, D. A. Haber, S. L. Stott, R. Kapur, and M. Toner. Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci. Rep. 7:2433, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Balasubramanian, A. K., K. A. Soni, A. Beskok, and S. D. Pillai. A microfluidic device for continuous capture and concentration of microorganisms from potable water. Lab Chip 7:1315–1321, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Beyor, N., L. Yi, T. S. Seo, and R. A. Mathies. Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. Anal. Chem. 81:3523–3528, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bisceglia, E., M. Cubizolles, C. I. Trainito, J. Berthier, C. Pudda, O. Français, F. Mallard, and B. Le Pioufle. A generic and label free method based on dielectrophoresis for the continuous separation of microorganism from whole blood samples. Sensors Actuators B 212:335–343, 2015.CrossRefGoogle Scholar
  11. 11.
    Boedicker, J. Q., L. Li, T. R. Kline, and R. F. Ismagilov. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boehm, D. A., P. A. Gottlieb, and S. Z. Hua. On-chip microfluidic biosensor for bacterial detection and identification. Sensors Actuators B 126:508–514, 2007.CrossRefGoogle Scholar
  13. 13.
    Bouza, E., D. Sousa, M. Rodríguez-Créixems, J. G. Lechuz, and P. Muñoz. Is the volume of blood cultured still a significant factor in the diagnosis of bloodstream infections? J. Clin. Microbiol. 45:2765, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cabrera, C. R. Continuous concentration of bacteria in a microfluidic flow cell using electrokinetic techniques. Electrophoresis 22:355–362, 2001.CrossRefPubMedGoogle Scholar
  15. 15.
    Cai, D., M. Xiao, P. Xu, Y. C. Xu, and W. Du. An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens. Lab Chip 14:3917–3924, 2014.CrossRefPubMedGoogle Scholar
  16. 16.
    Chang, W. H., C. H. Wang, C. L. Lin, J. J. Wu, M. S. Lee, and G. B. Lee. Rapid detection and typing of live bacteria from human joint fluid samples by utilizing an integrated microfluidic system. Biosens. Bioelectron. 66:148–154, 2015.CrossRefPubMedGoogle Scholar
  17. 17.
    Cho, Y. K., S. Kim, K. Lee, C. Park, J. G. Lee, and C. Ko. Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 30:3153–3159, 2009.CrossRefPubMedGoogle Scholar
  18. 18.
    Cho, Y. K., J. G. Lee, J. M. Park, B. S. Lee, Y. Lee, and C. Ko. One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7:565–573, 2007.CrossRefPubMedGoogle Scholar
  19. 19.
    Christner, M., H. Rohde, M. Wolters, I. Sobottka, K. Wegscheider, and M. Aepfelbacher. Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J. Clin. Microbiol. 48:1584–1591, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Cooper, R. M., D. C. Leslie, K. Domansky, A. Jain, C. Yung, M. Cho, S. Workman, M. Super, and D. E. Ingber. A microdevice for rapid optical detection of magnetically captured rare blood pathogens. Lab Chip 14:182–188, 2014.CrossRefPubMedGoogle Scholar
  21. 21.
    D’Amico, L., N. J. Ajami, J. A. Adachi, P. R. Gascoyne, and J. F. Petrosino. Isolation and concentration of bacteria from blood using microfluidic membraneless dialysis and dielectrophoresis. Lab Chip 17:1340–1348, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Delehanty, J. B., and F. S. Ligler. A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal. Chem. 74:5681–5687, 2002.CrossRefPubMedGoogle Scholar
  23. 23.
    Dellinger, R. P., M. M. Levy, A. Rhodes, D. Annane, H. Gerlach, S. M. Opal, J. E. Sevransky, C. L. Sprung, I. S. Douglas, R. Jaeschke, T. M. Osborn, M. E. Nunnally, S. R. Townsend, K. Reinhart, R. M. Kleinpell, D. C. Angus, C. S. Deutschman, F. R. Machado, G. D. Rubenfeld, S. A. Webb, R. J. Beale, J. L. Vincent, R. Moreno, and Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving Sepsis Campaign: International guidelines For Management of Severe Sepsis and Septic Shock: 2012. Intensive Care Med 39:165–228, 2013.CrossRefPubMedGoogle Scholar
  24. 24.
    Dharmasiri, U., M. A. Witek, A. A. Adams, J. K. Osiri, M. L. Hupert, T. S. Bianchi, D. L. Roelke, and S. A. Soper. Enrichment and detection of Escherichia coli O157:H7 from water samples using an antibody modified microfluidic chip. Anal. Chem. 82:2844–2849, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Diez-Silva, M., M. Dao, J. Han, C.-T. Lim, and S. Suresh. Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35:382–388, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dong, Y., A. M. Skelley, K. D. Merdek, K. M. Sprott, C. Jiang, W. E. Pierceall, J. Lin, M. Stocum, W. P. Carney, and D. A. Smirnov. Microfluidics and circulating tumor cells. J. Mol. Diagn. 15:149–157, 2013.CrossRefPubMedGoogle Scholar
  27. 27.
    Dow, P., K. Kotz, S. Gruszka, J. Holder, and J. Fiering. Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage. Lab Chip 18:923–932, 2018.CrossRefPubMedGoogle Scholar
  28. 28.
    Faridi, M. A., H. Ramachandraiah, I. Banerjee, S. Ardabili, S. Zelenin, and A. Russom. Elasto-inertial microfluidics for bacteria separation from whole blood for sepsis diagnostics. J. Nanobiotechnol. 15:3, 2017.CrossRefGoogle Scholar
  29. 29.
    Ferreira, L., F. Sánchez-Juanes, I. Porras-Guerra, M. I. García-García, J. E. García-Sánchez, J. M. González-Buitrago, and J. L. Muñoz-Bellido. Microorganisms direct identification from blood culture by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin. Microbiol. Infect. 17:546–551, 2010.CrossRefGoogle Scholar
  30. 30.
    Foudeh, A. M., T. Fatanat Didar, T. Veres, and M. Tabrizian. Microfluidic designs and techniques using lab-on-a-chip devices for pathogen detection for point-of-care diagnostics. Lab Chip 12:3249–3266, 2012.CrossRefPubMedGoogle Scholar
  31. 31.
    Frost, R., H. Newsham, S. Parmar, and A. Gonzalez-Ruiz. Impact of delayed antimicrobial therapy in septic ITU patients. Crit. Care 14:P20–P20, 2010.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Gagnon, Z., and H. C. Chang. Aligning fast alternating current electroosmotic flow fields and characteristic frequencies with dielectrophoretic traps to achieve rapid bacteria detection. Electrophoresis 26:3725–3737, 2005.CrossRefPubMedGoogle Scholar
  33. 33.
    Gomez-Sjoberg, R., D. T. Morisette, and R. Bashir. Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. J. Microelectromech. Syst. 14:829–838, 2005.CrossRefGoogle Scholar
  34. 34.
    Gossett, D. R., W. M. Weaver, A. J. Mach, S. C. Hur, H. T. Tse, W. Lee, H. Amini, and D. Di Carlo. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 397:3249–3267, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Goto, M., and M. N. Al-Hasan. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin. Microbiol. Infect. 19:501–509, 2013.CrossRefPubMedGoogle Scholar
  36. 36.
    Hajba, L., and A. Guttman. Circulating tumor-cell detection and capture using microfluidic devices. TrAC, Trends Anal. Chem. 59:9–16, 2014.CrossRefGoogle Scholar
  37. 37.
    Hardy, D. J., B. B. Hulbert, and P. C. Migneault. Time to detection of positive BacT/Alert blood cultures and lack of need for routine subculture of 5- to 7-day negative cultures. J. Clin. Microbiol. 30:2743–2745, 1992.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hollowell, J. G., O. W. van Assendelft, E. W. Gunter, B. G. Lewis, M. Najjar, C. Pfeiffer, and Centers for Disease Control and Prevention, National Center for Health Statistics. Hematological and iron-related analytes—reference data for persons aged 1 year and over: United States, 1988–94. Vital Health Stat. 11:1–156, 2005.Google Scholar
  39. 39.
    Hoshino, K., Y. Y. Huang, N. Lane, M. Huebschman, J. W. Uhr, E. P. Frenkel, and X. Zhang. Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11:3449–3457, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hou, H. W., R. P. Bhattacharyya, D. T. Hung, and J. Han. Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 15:2297–2307, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hou, H. W., M. E. Warkiani, B. L. Khoo, Z. R. Li, R. A. Soo, D. S.-W. Tan, W.-T. Lim, J. Han, A. A. S. Bhagat, and C. T. Lim. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3:1259, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Huang, Y., J. M. Yang, P. J. Hopkins, et al. Separation of simulants of biological warfare agents from blood by a miniaturized dielectrophoresis device. Biomed. Microdevice 5:217, 2003.CrossRefGoogle Scholar
  43. 43.
    Hwang, K.-Y., S.-Y. Jeong, Y.-R. Kim, K. Namkoong, H.-K. Lim, W.-S. Chung, J.-H. Kim, and N. Huh. Rapid detection of bacterial cell from whole blood: integration of DNA sample preparation into single micro-PCR chip. Sensors Actuators B 154:46–51, 2011.CrossRefGoogle Scholar
  44. 44.
    Hwang, K.-Y., H.-K. Lim, S.-Y. Jung, K. Namkoong, J.-H. Kim, N. Huh, C. Ko, and J.-C. Park. Bacterial DNA sample preparation from whole blood using surface-modified Si pillar arrays. Anal. Chem. 80:7786–7791, 2008.CrossRefPubMedGoogle Scholar
  45. 45.
    Hyun, K. A., T. Y. Lee, S. H. Lee, and H. I. Jung. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs). Biosens. Bioelectron. 67:86–92, 2015.CrossRefPubMedGoogle Scholar
  46. 46.
    Jiang, X., N. Shao, W. Jing, S. Tao, S. Liu, and G. Sui. Microfluidic chip integrating high throughput continuous-flow PCR and DNA hybridization for bacteria analysis. Talanta 122:246–250, 2014.CrossRefPubMedGoogle Scholar
  47. 47.
    Jung, J. H., G. Y. Kim, and T. S. Seo. An integrated passive micromixer-magnetic separation-capillary electrophoresis microdevice for rapid and multiplex pathogen detection at the single-cell level. Lab Chip 11:3465–3470, 2011.CrossRefPubMedGoogle Scholar
  48. 48.
    Kalashnikov, M., M. Mueller, C. McBeth, J. C. Lee, J. Campbell, A. Sharon, and A. F. Sauer-Budge. Rapid phenotypic stress-based microfluidic antibiotic susceptibility testing of Gram-negative clinical isolates. Sci. Rep. 7:8031, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Kang, D. K., M. M. Ali, K. Zhang, S. S. Huang, E. Peterson, M. A. Digman, E. Gratton, and W. Zhao. Rapid detection of single bacteria in unprocessed blood using Integrated Comprehensive Droplet Digital Detection. Nat. Commun. 5:5427, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Kang, J. H., M. Super, C. W. Yung, R. M. Cooper, K. Domansky, A. R. Graveline, T. Mammoto, J. B. Berthet, H. Tobin, M. J. Cartwright, A. L. Watters, M. Rottman, A. Waterhouse, A. Mammoto, N. Gamini, M. J. Rodas, A. Kole, A. Jiang, T. M. Valentin, A. Diaz, K. Takahashi, and D. E. Ingber. An extracorporeal blood-cleansing device for sepsis therapy. Nat. Med. 20:1211–1216, 2014.CrossRefPubMedGoogle Scholar
  51. 51.
    Karabacak, N. M., P. S. Spuhler, F. Fachin, E. J. Lim, V. Pai, E. Ozkumur, J. M. Martel, N. Kojic, K. Smith, P.-I. Chen, J. Yang, H. Hwang, B. Morgan, J. Trautwein, T. A. Barber, S. L. Stott, S. Maheswaran, R. Kapur, D. A. Haber, and M. Toner. Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat. Protoc. 9:694, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim, U., and H. T. Soh. Simultaneous sorting of multiple bacterial targets using integrated dielectrophoretic-magnetic activated cell sorter. Lab Chip 9:2313–2318, 2009.CrossRefPubMedGoogle Scholar
  53. 53.
    Kok, J., L. C. Thomas, T. Olma, S. C. A. Chen, and J. R. Iredell. Identification of bacteria in blood culture broths using matrix-assisted laser desorption-ionization sepsityper™ and time of flight mass spectrometry. PLoS ONE 6:e23285, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Koo, O. K., Y. Liu, S. Shuaib, S. Bhattacharya, M. R. Ladisch, R. Bashir, and A. K. Bhunia. Targeted capture of pathogenic bacteria using a mammalian cell receptor coupled with dielectrophoresis on a biochip. Anal. Chem. 81:3094–3101, 2009.CrossRefPubMedGoogle Scholar
  55. 55.
    Kothari, A., M. Morgan, and D. A. Haake. Emerging technologies for rapid identification of bloodstream pathogens. Clin. Infect. Dis. 59:272–278, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kuczenski, R. S., H. C. Chang, and A. Revzin. Dielectrophoretic microfluidic device for the continuous sorting of Escherichia coli from blood cells. Biomicrofluidics 5:32005–3200515, 2011.CrossRefPubMedGoogle Scholar
  57. 57.
    Laczka, O., J. M. Maesa, N. Godino, J. del Campo, M. Fougt-Hansen, J. P. Kutter, D. Snakenborg, F. X. Munoz-Pascual, and E. Baldrich. Improved bacteria detection by coupling magneto-immunocapture and amperometry at flow-channel microband electrodes. Biosens. Bioelectron. 26:3633–3640, 2011.CrossRefPubMedGoogle Scholar
  58. 58.
    Lagally, E. T., S. H. Lee, and H. T. Soh. Integrated microsystem for dielectrophoretic cell concentration and genetic detection. Lab Chip 5:1053–1058, 2005.CrossRefPubMedGoogle Scholar
  59. 59.
    Lam, B., Z. Fang, E. H. Sargent, and S. O. Kelley. Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Anal. Chem. 84:21–25, 2012.CrossRefPubMedGoogle Scholar
  60. 60.
    Lapizco-Encinas, B. H., R. V. Davalos, B. A. Simmons, E. B. Cummings, and Y. Fintschenko. An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J. Microbiol. Methods 62:317–326, 2005.CrossRefPubMedGoogle Scholar
  61. 61.
    Lapizco-Encinas, B. H., B. A. Simmons, E. B. Cummings, and Y. Fintschenko. Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704, 2004.CrossRefPubMedGoogle Scholar
  62. 62.
    Lay, C., C. Y. Teo, L. Zhu, X. L. Peh, H. M. Ji, B. R. Chew, R. Murthy, H. H. Feng, and W. T. Liu. Enhanced microfiltration devices configured with hydrodynamic trapping and a rain drop bypass filtering architecture for microbial cells detection. Lab Chip 8:830–833, 2008.CrossRefPubMedGoogle Scholar
  63. 63.
    Lee, J. J., K. J. Jeong, M. Hashimoto, A. H. Kwon, A. Rwei, S. A. Shankarappa, J. H. Tsui, and D. S. Kohane. Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14:1–5, 2014.CrossRefPubMedGoogle Scholar
  64. 64.
    Lee, S. W., K. A. Hyun, S. I. Kim, J. Y. Kang, and H. I. Jung. Continuous enrichment of circulating tumor cells using a microfluidic lateral flow filtration chip. J. Chromatogr. A 1377:100–105, 2015.CrossRefPubMedGoogle Scholar
  65. 65.
    Lee, W., D. Kwon, W. Choi, G. Y. Jung, and S. Jeon. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5:7717, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Leibovici, L., I. Shraga, M. Drucker, H. Konigsberger, Z. Samra, and S. D. Pitlik. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 244:379–386, 1998.CrossRefPubMedGoogle Scholar
  67. 67.
    Lever, A., and I. Mackenzie. Sepsis: definition, epidemiology, and diagnosis. BMJ 335:879–883, 2007.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Li, P., Z. Mao, Z. Peng, L. Zhou, Y. Chen, P.-H. Huang, C. I. Truica, J. J. Drabick, W. S. El-Deiry, M. Dao, S. Suresh, and T. J. Huang. Acoustic separation of circulating tumor cells. Proc. Natl. Acad. Sci. 112:4970, 2015.CrossRefPubMedGoogle Scholar
  69. 69.
    Liesenfeld, O., L. Lehman, K. P. Hunfeld, and G. Kost. Molecular diagnosis of sepsis: new aspects and recent developments. Eur. J. Microbiol. Immunol. 4:1–25, 2014.CrossRefGoogle Scholar
  70. 70.
    Liu, R. H., J. Yang, R. Lenigk, J. Bonanno, and P. Grodzinski. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA Microarray Detection. Anal. Chem. 76:1824–1831, 2004.CrossRefPubMedGoogle Scholar
  71. 71.
    Liu, Z., W. Zhang, F. Huang, H. Feng, W. Shu, X. Xu, and Y. Chen. High throughput capture of circulating tumor cells using an integrated microfluidic system. Biosens. Bioelectron. 47:113–119, 2013.CrossRefPubMedGoogle Scholar
  72. 72.
    Mach, A. J., and D. Di Carlo. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107:302–311, 2010.CrossRefPubMedGoogle Scholar
  73. 73.
    Mai, J., V. V. Abhyankar, M. E. Piccini, J. P. Olano, R. Willson, and A. V. Hatch. Rapid detection of trace bacteria in biofluids using porous monoliths in microchannels. Biosens. Bioelectron. 54:435–441, 2014.CrossRefPubMedGoogle Scholar
  74. 74.
    Mairhofer, J., K. Roppert, and P. Ertl. Microfluidic systems for pathogen sensing: a review. Sensors (Basel) 9:4804–4823, 2009.CrossRefGoogle Scholar
  75. 75.
    Mannoor, M. S., S. Zhang, A. J. Link, and M. C. McAlpine. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc. Natl Acad. Sci. U.S.A. 107:19207–19212, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Marschal, M., J. Bachmaier, I. Autenrieth, P. Oberhettinger, M. Willmann, and S. Peter. Evaluation of the accelerate pheno system for fast identification and antimicrobial susceptibility testing from positive blood cultures in bloodstream infections caused by gram-negative pathogens. J. Clin. Microbiol. 55:2116–2126, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Martel, J. M., and M. Toner. Inertial focusing in microfluidics. Annu. Rev. Biomed. Eng. 16:371–396, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Martínez-Salas, E., J. A. Martín, and M. Vicente. Relationship of Escherichia coli density to growth rate and cell age. J. Bacteriol. 147:97–100, 1981.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Mayr, F. B., S. Yende, and D. C. Angus. Epidemiology of severe sepsis. Virulence 5:4–11, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mujika, M., S. Arana, E. Castano, M. Tijero, R. Vilares, J. M. Ruano-Lopez, A. Cruz, L. Sainz, and J. Berganza. Magnetoresistive immunosensor for the detection of Escherichia coli O157:H7 including a microfluidic network. Biosens. Bioelectron. 24:1253–1258, 2009.CrossRefPubMedGoogle Scholar
  81. 81.
    Murray, P. R., and H. Masur. Current approaches to the diagnosis of bacterial and fungal bloodstream infections in the intensive care unit. Crit. Care Med. 40:3277–3282, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ohlsson, P., M. Evander, K. Petersson, L. Mellhammar, A. Lehmusvuori, U. Karhunen, M. Soikkeli, T. Seppa, E. Tuunainen, A. Spangar, P. von Lode, K. Rantakokko-Jalava, G. Otto, S. Scheding, T. Soukka, S. Wittfooth, and T. Laurell. Integrated acoustic separation, enrichment, and microchip polymerase chain reaction detection of bacteria from blood for rapid sepsis diagnostics. Anal. Chem. 88:9403–9411, 2016.CrossRefPubMedGoogle Scholar
  83. 83.
    Olanrewaju, A. O., A. Ng, P. DeCorwin-Martin, A. Robillard, and D. Juncker. Microfluidic capillaric circuit for rapid and facile bacteria detection. Anal. Chem. 89:6846–6853, 2017.CrossRefPubMedGoogle Scholar
  84. 84.
    Özenci, V., and G. M. Rossolini. Rapid microbial identification and antimicrobial susceptibility testing to drive better patient care: an evolving scenario. J. Antimicrob. Chemother. 74:i2–i5, 2019.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Park, S., Y. Zhang, T. H. Wang, and S. Yang. Continuous dielectrophoretic bacterial separation and concentration from physiological media of high conductivity. Lab Chip 11:2893–2900, 2011.CrossRefPubMedGoogle Scholar
  86. 86.
    Peralta, G., M. P. Roiz, M. B. Sánchez, J. C. Garrido, B. Ceballos, M. J. Rodríguez-Lera, F. Mateos, and I. De Benito. Time-to-positivity in patients with Escherichia coli bacteraemia. Clin. Microbiol. Infect. 13:1077–1082, 2007.CrossRefPubMedGoogle Scholar
  87. 87.
    Pereiro, I., A. Bendali, S. Tabnaoui, L. Alexandre, J. Srbova, Z. Bilkova, S. Deegan, L. Joshi, J. L. Viovy, L. Malaquin, B. Dupuy, and S. Descroix. A new microfluidic approach for the one-step capture, amplification and label-free quantification of bacteria from raw samples. Chem. Sci. 8:1329–1336, 2017.CrossRefPubMedGoogle Scholar
  88. 88.
    Peters, R. P., P. H. Savelkoul, A. M. Simoons-Smit, S. A. Danner, C. M. Vandenbroucke-Grauls, and M. A. van Agtmael. Faster identification of pathogens in positive blood cultures by fluorescence in situ hybridization in routine practice. J. Clin. Microbiol. 44:119–123, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Pethig, R. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 2010.  https://doi.org/10.1063/1.3456626.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Pitt, W. G., M. Alizadeh, G. A. Husseini, D. S. McClellan, C. M. Buchanan, C. G. Bledsoe, R. A. Robison, R. Blanco, B. L. Roeder, M. Melville, and A. K. Hunter. Rapid separation of bacteria from blood-review and outlook. Biotechnol. Prog. 32:823–839, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Pivetal, J., S. Toru, M. Frenea-Robin, N. Haddour, S. Cecillon, N. M. Dempsey, F. Dumas-Bouchiat, and P. Simonet. Selective isolation of bacterial cells within a microfluidic device using magnetic probe-based cell fishing. Sensors Actuators B 195:581–589, 2014.CrossRefGoogle Scholar
  92. 92.
    Podszun, S., P. Vulto, H. Heinz, S. Hakenberg, C. Hermann, T. Hankemeier, and G. A. Urban. Enrichment of viable bacteria in a micro-volume by free-flow electrophoresis. Lab Chip 12:451–457, 2012.CrossRefPubMedGoogle Scholar
  93. 93.
    Poritz, M. A., A. J. Blaschke, C. L. Byington, L. Meyers, K. Nilsson, D. E. Jones, S. A. Thatcher, T. Robbins, B. Lingenfelter, E. Amiott, A. Herbener, J. Daly, S. F. Dobrowolski, D. H. F. Teng, and K. M. Ririe. FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS ONE 6:e26047, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Pratt, E. D., C. Huang, B. G. Hawkins, J. P. Gleghorn, and B. J. Kirby. Rare cell capture in microfluidic devices. Chem. Eng. Sci. 66:1508–1522, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Prinyakupt, J., and C. Pluempitiwiriyawej. Segmentation of white blood cells and comparison of cell morphology by linear and naive Bayes classifiers. Biomed. Eng. Online 14:63, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Puchberger-Enengl, D., S. Podszun, H. Heinz, C. Hermann, P. Vulto, and G. A. Urban. Microfluidic concentration of bacteria by on-chip electrophoresis. Biomicrofluidics 5:44111–4411110, 2011.CrossRefPubMedGoogle Scholar
  97. 97.
    Raub, C. B., C. Lee, and E. Kartalov. Sequestration of bacteria from whole blood by optimized microfluidic cross-flow filtration for Rapid Antimicrobial Susceptibility Testing. Sensors Actuators B 210:120–123, 2015.CrossRefGoogle Scholar
  98. 98.
    Reshes, G., S. Vanounou, I. Fishov, and M. Feingold. Cell shape dynamics in Escherichia coli. Biophys. J . 94:251–264, 2008.CrossRefPubMedGoogle Scholar
  99. 99.
    Salimnia, H., M. R. Fairfax, P. R. Lephart, P. Schreckenberger, S. M. DesJarlais, J. K. Johnson, G. Robinson, K. C. Carroll, A. Greer, M. Morgan, R. Chan, M. Loeffelholz, F. Valencia-Shelton, S. Jenkins, A. N. Schuetz, J. A. Daly, T. Barney, A. Hemmert, and K. J. Kanack. Evaluation of the FilmArray blood culture identification panel: results of a multicenter controlled trial. J. Clin. Microbiol. 54:687, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Sarioglu, A. F., N. Aceto, N. Kojic, M. C. Donaldson, M. Zeinali, B. Hamza, A. Engstrom, H. Zhu, T. K. Sundaresan, D. T. Miyamoto, X. Luo, A. Bardia, B. S. Wittner, S. Ramaswamy, T. Shioda, D. T. Ting, S. L. Stott, R. Kapur, S. Maheswaran, D. A. Haber, and M. Toner. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12:685–691, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Schwartz, O., and M. Bercovici. Microfluidic assay for continuous bacteria detection using antimicrobial peptides and isotachophoresis. Anal. Chem. 86:10106–10113, 2014.CrossRefPubMedGoogle Scholar
  102. 102.
    Sequist, L. V., S. Nagrath, M. Toner, D. A. Haber, and T. J. Lynch. The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients. J. Thorac. Oncol. 4:281–283, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Suehiro, J., D. Noutomi, M. Shutou, and M. Hara. Selective detection of specific bacteria using dielectrophoretic impedance measurement method combined with an antigen–antibody reaction. J. Electrostat. 58:229–246, 2003.CrossRefGoogle Scholar
  104. 104.
    Suehiro, J., A. Ohtsubo, T. Hatano, and M. Hara. Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip. Sensors Actuators B 119:319–326, 2006.CrossRefGoogle Scholar
  105. 105.
    Sun, X., W. D. Weinlandt, H. Patel, M. Wu, and C. J. Hernandez. A microfluidic platform for profiling biomechanical properties of bacteria. Lab Chip 14:2491–2498, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Tadimety, A., A. Syed, Y. Nie, C. R. Long, K. M. Kready, and J. X. Zhang. Liquid biopsy on chip: a paradigm shift towards the understanding of cancer metastasis. Integr. Biol. 9:22–49, 2017.CrossRefGoogle Scholar
  107. 107.
    Thon, J. N., H. Macleod, A. J. Begonja, J. Zhu, K.-C. Lee, A. Mogilner, J. H. Hartwig, and J. E. Italiano. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat. Commun. 3:852, 2012.CrossRefPubMedGoogle Scholar
  108. 108.
    Tokel, O., U. H. Yildiz, F. Inci, N. G. Durmus, O. O. Ekiz, B. Turker, C. Cetin, S. Rao, K. Sridhar, N. Natarajan, H. Shafiee, A. Dana, and U. Demirci. Portable microfluidic integrated plasmonic platform for pathogen detection. Sci. Rep. 5:9152, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Urbansky, A., P. Ohlsson, A. Lenshof, F. Garofalo, S. Scheding, and T. Laurell. Rapid and effective enrichment of mononuclear cells from blood using acoustophoresis. Sci. Rep. 7:17161, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Vincent, J. L., J. Rello, J. Marshall, E. Silva, A. Anzueto, C. D. Martin, R. Moreno, J. Lipman, C. Gomersall, Y. Sakr, K. Reinhart, and EPIC II Group of Investigators. International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329, 2009.CrossRefPubMedGoogle Scholar
  111. 111.
    Wang, S., F. Inci, T. L. Chaunzwa, A. Ramanujam, A. Vasudevan, S. Subramanian, A. Chi Fai Ip, B. Sridharan, U. A. Gurkan, and U. Demirci. Portable microfluidic chip for detection of Escherichia coli in produce and blood. Int. J. Nanomed. 7:2591–2600, 2012.Google Scholar
  112. 112.
    Wei Hou, H., H. Y. Gan, A. A. Bhagat, L. D. Li, C. T. Lim, and J. Han. A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6:24115–2411513, 2012.CrossRefPubMedGoogle Scholar
  113. 113.
    Wu, Z., B. Willing, J. Bjerketorp, J. K. Jansson, and K. Hjort. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199, 2009.CrossRefPubMedGoogle Scholar
  114. 114.
    Xia, N., T. P. Hunt, B. T. Mayers, E. Alsberg, G. M. Whitesides, R. M. Westervelt, and D. E. Ingber. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices 8:299–308, 2006.CrossRefPubMedGoogle Scholar
  115. 115.
    Yagupsky, P., and F. S. Nolte. Quantitative aspects of septicemia. Clin. Microbiol. Rev. 3:269–279, 1990.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Yang, Y., S. Kim, and J. Chae. Separating and detecting Escherichia coli in a microfluidic channel for urinary tract infection applications. J. Microelectromech. Syst. 20:819–827, 2011.CrossRefGoogle Scholar
  117. 117.
    Yu, J. J., L. D. Xiao, and M. Yang. A PDMS microfluidic chip with nanostructures for bacteria concentration and fast detection. In: 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, pp. 272–275, 2008.Google Scholar
  118. 118.
    Yung, C. W., J. Fiering, A. J. Mueller, and D. E. Ingber. Micromagnetic-microfluidic blood cleansing device. Lab Chip 9:1171–1177, 2009.CrossRefPubMedGoogle Scholar
  119. 119.
    Zelenin, S., J. Hansson, S. Ardabili, H. Ramachandraiah, H. Brismar, and A. Russom. Microfluidic-based isolation of bacteria from whole blood for sepsis diagnostics. Biotechnol. Lett. 37:825–830, 2015.CrossRefPubMedGoogle Scholar
  120. 120.
    Zhu, L., Q. Zhang, H. Feng, S. Ang, F. S. Chau, and W. T. Liu. Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. Lab Chip 4:337–341, 2004.CrossRefPubMedGoogle Scholar
  121. 121.
    Zhu, Z., W. Zhang, X. Leng, M. Zhang, Z. Guan, J. Lu, and C. J. Yang. Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab Chip 12:3907–3913, 2012.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Thayer School of Engineering at DartmouthHanoverUSA

Personalised recommendations