Development of Zinc Chelating Resin Polymer Beads for the Removal of Cell-Free Hemoglobin

  • Kelli Simms
  • Elisabeth Rebholz
  • Robert M. Mayberry
  • Swati Basu
  • Andreas Perlegas
  • Martin Guthold
  • Daniel B. Kim-Shapiro
  • Elaheh RahbarEmail author


Red blood cell (RBC) hemolysis is one of the most common storage lesions in packed RBCs (pRBC). Older units of pRBCs, especially those > 21 days old, have increasing levels of hemolysis leading to increased oxidative stress and premature platelet activation. This effect can mostly be attributed to the increase of cell-free hemoglobin (Hb). Therefore, removal of cell-free Hb from pRBCs prior to transfusion could mitigate these deleterious effects. We propose a new method for the removal of Hb from pRBCs using zinc beads. Prepared Hb solutions and pRBCs were treated with zinc beads using two different protocols. UV–Vis spectrophotometry was used to determine Hb concentrations, before and after treatment. Experiments were run in triplicate and paired t tests were used to determine significant differences between groups. Zinc beads removed on average 94% of cell-free Hb within 15 min and 78% Hb from pRBCs (p < 0.0001), demonstrating a maximum binding capacity ~ 66.2 ± 0.7 mg Hb/mL beads. No differences in RBC morphology or deformability were observed after treatment. This study demonstrates the feasibility of using zinc beads for the rapid and targeted removal of Hb from pRBC units. Further investigation is needed to scale this method for large volume removal.


Hemolysis RBC Blood products Transfusion Zinc resin Hb 



Funding for this study was provided by the National Science Foundation (NSF) REU Site: Imaging and Mechanics-based Projects on Accidental Cases of Trauma Impact, Award No. 1559700 (E. Rebholz summer REU intern), and National Institutes of Health (NIH). Specifically, NIH Subcontract (NIH U01 HL077863-11, Subaward No. 0010612B, Subcontract PI: E. Rahbar) and NIH Grant R01 HL098032 (D. Kim-Shapiro). Dr. Rahbar’s startup funds were also used to support this study.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Supplementary material

10439_2019_2249_MOESM1_ESM.docx (5.7 mb)
Supplementary material 1 (DOCX 5790 kb)


  1. 1.
    Aliyu, Z. Y., A. R. Tumblin, and G. J. Kato. Current therapy of sickle cell disease. Haematologica 91:7–10, 2006.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Belanger, A. M., C. Keggi, T. Kanias, M. T. Gladwin, and D. B. Kim-Shapiro. Effects of nitric oxide and its congeners on sickle red blood cell deformability. Transfusion 55:2464–2472, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bennett-Guerrero, E., B. S. Kirby, H. Zhu, A. E. Herman, N. Bandarenko, and T. J. McMahon. Randomized study of washing 40- to 42-day-stored red blood cells. Transfusion 54:2544–2552, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Blood Product Administration. Blood Transfusion. Washington, DC: NCLEX RN Mastery, 2019.Google Scholar
  5. 5.
    Chung, K. W., S. V. Basavaraju, Y. Mu, K. L. van Santen, K. A. Haass, R. Henry, J. Berger, and M. J. Kuehnert. Declining blood collection and utilization in the United States. Transfusion 56:2184–2192, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    CytoSorb. Broad cytokine and toxin reduction to control deadly inflammation New York: CytoSorbents, 2018.Google Scholar
  7. 7.
    D’Alessandro, A., G. Liumbruno, G. Grazzini, and L. Zolla. Red blood cell storage: the story so far. Blood Transfusion 8:82–88, 2010.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Donadee, C., N. J. Raat, T. Kanias, J. Tejero, J. S. Lee, E. E. Kelley, X. Zhao, C. Liu, H. Reynolds, I. Azarov, S. Frizzell, E. M. Meyer, A. D. Donnenberg, L. Qu, D. Triulzi, D. B. Kim-Shapiro, and M. T. Gladwin. Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 124:465–476, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Flegel, W. A., C. Natanson, and H. G. Klein. Does prolonged storage of red blood cells cause harm? Br J Haematol 165:3–16, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Glynn, S. A., H. G. Klein, and P. M. Ness. The red blood cell storage lesion: the end of the beginning. Transfusion 56:1462–1468, 2016.CrossRefPubMedGoogle Scholar
  11. 11.
    Hansen, A. L., T. R. Turner, J. D. R. Kurach, and J. P. Acker. Quality of red blood cells washed using a second wash sequence on an automated cell processor. Transfusion 55:2415–2421, 2015.CrossRefPubMedGoogle Scholar
  12. 12.
    Helms, C., M. Marvel, W. Zhao, M. Stahle, R. Vest, G. Kato, J. Lee, G. Christ, M. Gladwin, R. Hantgan, and D. Kim-Shapiro. Mechanisms of hemolysis-associated platelet activation. J. Thromb. Hemost. 11:2148–2154, 2013.CrossRefGoogle Scholar
  13. 13.
    Huisjes, R., A. Bogdanova, W. W. van Solinge, R. M. Schiffelers, L. Kaestner, and R. van Wijk. Squeezing for life—properties of red blood cell deformability. Front Physiol 9:656, 2018.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jensen, F. Nitric oxide formation from nitrite in zebrafish. J. Exp. Biol. 210:3387–3394, 2007.CrossRefPubMedGoogle Scholar
  15. 15.
    Khanal, G., R. A. Huynh, K. Torabian, H. Xia, E. Voros, and S. S. Shevkoplyas. Towards bedside washing of stored red blood cells: a prototype of a simple apparatus based on microscale sedimentation in normal gravity. Vox Sang 113:31–39, 2018.CrossRefPubMedGoogle Scholar
  16. 16.
    Kim-Shapiro, D., J. Lee, and M. Gladwin. Storage lesion: role of red cell breakdown. Transfusion 51:844–851, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lagerberg, J. W., H. Korsten, P. F. Van Der Meer, and D. De Korte. Prevention of red cell storage lesion: a comparison of five different additive solutions. Blood Transfus. 15:456–462, 2017.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Marschner, S., and R. Goodrich. Pathogen reduction technology treatment of platelets, plasma and whole blood using riboflavin and UV light. Transfus. Med. Hemother. 38:8–18, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Osei-Hwedieh, D. O., T. Kanias, C. S. Croix, M. Jessup, Z. Xiong, D. Sinchar, J. Franks, Q. Xu, E. M. Noveli, J. T. Sertorio, K. Potoka, R. J. Binder, S. Basu, A. M. Belanger, D. B. Kim-Shapiro, D. Triulzi, J. S. Lee, and M. T. Gladwin. Sickle cell trait increases red blood cell storage hemolysis and post-transfusion clearance in mice. EBioMedicine 11:239–248, 2016.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Plum, L. M., L. Rink, and H. Haase. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rifkind, J. M., and J. M. Heim. Interaction of zinc and hemoglobin: binding of zinc and the oxygen affinity. Biochemistry 16:4438–4443, 1977.CrossRefPubMedGoogle Scholar
  22. 22.
    Schaer, D. J., P. W. Buehler, A. I. Alayash, J. D. Belcher, and G. M. Vercellotti. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood 121:1276–1284, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Schmidt, A., M. Refaai, S. Kirkley, and N. Blumberg. Proven and potential clinical benefits of washing red blood cells before transfusion: current perspectives. Int. J. Clin. Transfus. Med. 4:79–88, 2016.CrossRefGoogle Scholar
  24. 24.
    Simms, K., N. Wajih, J. Cardenas, D. B. Kim-Shapiro, and E. Rahbar. Studies of in vitro hemolysis-induced platelet activation in co-transfused packed red blood cells and platelets, 2018 (submitted).Google Scholar
  25. 25.
    Singhal, R., G. K. Annarapu, A. Pandey, S. Chawla, A. Ojha, A. Gupta, M. A. Cruz, T. Seth, and P. Guchhait. Hemoglobin interaction with GP1b alpha induces platelet activation and apoptosis: a novel mechanism associated with intravascular hemolysis. Haematologica 100:1526–1533, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    United States Environmental Protection Agency, Clement International Corporation, Syracuse Research Corporation, and United States Agency for toxic substances and disease registry. Toxicological Profile for Zinc. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, p. 17, 1994.Google Scholar
  27. 27.
    Van Reen, R. Zinc Toxicity in Man and Experimental Species. Bethesda: Naval Medical Research Center, p. 18, 2019.Google Scholar
  28. 28.
    Warner, M. A., I. J. Welsby, P. J. Norris, C. C. Silliman, S. Armour, E. D. Wittwer, P. J. Santrach, L. A. Meade, L. M. Liedl, C. M. Nieuwenkamp, B. Douthit, C. M. van Buskirk, P. J. Schulte, R. E. Carter, and D. J. Kor. Point-of-care washing of allogeneic red blood cells for the prevention of transfusion-related respiratory complications (WAR-PRC): a protocol for a multicenter randomised clinical trial in patients undergoing cardiac surgery. BMJ Open 7:e016398, 2017.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Which agarose (sepharose) to choose? 2, 4, or 6%? Crosslinked? In: A Discussion of Protein Research G Biosciences, 2014.Google Scholar
  30. 30.
    Zinc chelating resin (cat. # 786-287). edited by G-Biosciences, 2018.Google Scholar
  31. 31.
    Zinc, Serum Online. Mayo Foundation for Medical Education and Research Please provide complete details of references [30, 31] if possible.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Kelli Simms
    • 1
  • Elisabeth Rebholz
    • 1
  • Robert M. Mayberry
    • 1
  • Swati Basu
    • 2
  • Andreas Perlegas
    • 2
  • Martin Guthold
    • 2
  • Daniel B. Kim-Shapiro
    • 2
  • Elaheh Rahbar
    • 1
    Email author
  1. 1.Department of Biomedical Engineering, Virginia Tech – Wake Forest School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston SalemUSA
  2. 2.Department of PhysicsWake Forest UniversityWinston SalemUSA

Personalised recommendations