Annals of Biomedical Engineering

, Volume 47, Issue 6, pp 1435–1445 | Cite as

A Three-Dimensional Model of Human Lung Airway Tree to Study Therapeutics Delivery in the Lungs

  • Antonio Copploe
  • Morteza Vatani
  • Jae-Won Choi
  • Hossein TavanaEmail author


Surfactant instillation into the lungs is used to treat several respiratory disorders such as neonatal respiratory distress syndrome (NRDS). The success of the treatments significantly depends on the uniformity of distribution of the instilled surfactant in airways. This is challenging to directly evaluate due to the inaccessibility of lung airways and great difficulty with imaging them. To tackle this problem, we developed a 3D physical model of human lung airway tree. Using a defined set of principles, we first generated computational models of eight generations of neonates’ tracheobronchial tree comprising the conducting zone airways. Similar to native lungs, these models contained continuously-branching airways that rotated in the 3D space and reduced in size with increase in the generation number. Then, we used additive manufacturing to generate physical airway tree models that precisely replicated the computational designs. We demonstrated the utility of the physical models to study surfactant delivery in the lungs and showed the effect of orientation of the airway tree in the gravitational field on the distribution of instilled surfactant between the left and right lungs and within each lung. Our 3D lung airway tree model offers a novel tool for quantitative studies of therapeutics delivery.


3D lung airway tree Computational design Additive manufacturing Physical models Surfactant delivery 



Financial support was provided by a University of Akron Firestone Fellowship to H.T and a grant CA216413 from National Institutes of Health.

Conflict of interest

The authors do not have any conflict of interest to declare.

Supplementary material

Supplementary material 1 (MOV 7872 kb)

Supplementary material 2 (MOV 10029 kb)

10439_2019_2242_MOESM3_ESM.docx (5.8 mb)
Supplementary material 3 (DOCX 5899 kb)


  1. 1.
    Anderson, J. C., R. C. Molthen, C. A. Dawson, S. T. Haworth, J. L. Bull, M. R. Glucksberg, and J. B. Grotberg. Effect of ventilation rate on instilled surfactant distribution in the pulmonary airways of rats. J. Appl. Physiol. 97:45–56, 2004.CrossRefPubMedGoogle Scholar
  2. 2.
    Andreeva, A. V., M. A. Kutuzov, and T. A. Voyno-Yasenetskaya. Regulation of surfactant secretion in alveolar type II cells. Am. J. Physiol. Lung Cell Mol. Physiol. 293:259–271, 2007.CrossRefGoogle Scholar
  3. 3.
    Atefi, E., J. A. Mann, Jr, and H. Tavana. Ultralow interfacial tensions of aqueous two-phase systems measured using drop shape. Langmuir. 30:9691–9699, 2014.CrossRefPubMedGoogle Scholar
  4. 4.
    Baroud, C. N., S. Tsikata, and M. Heil. The propagation of low-viscosity fingers into fluid-filled branching networks. J. Fluid Mech. 546:285–294, 2006.CrossRefGoogle Scholar
  5. 5.
    Borgas, M. S., and J. B. Groberg. Monolayer flow on a thin film. J. Fluid Mech. 193:151–170, 1988.CrossRefGoogle Scholar
  6. 6.
    Cassidy, K. J., J. L. Bull, M. R. Glucksberg, C. A. Dawson, S. T. Haworth, R. Hirschl, N. Gavriely, and J. B. Grotberg. A rat lung model of instilled liquid transport in the pulmonary airways. J. Appl. Physiol. 90:1955–1967, 2001.CrossRefPubMedGoogle Scholar
  7. 7.
    Cassidy, K. J., N. Gavriely, and J. B. Grotberg. Liquid plug flow in straight and bifurcating tubes. J. Biomech. Eng. 123:580–589, 2001.CrossRefPubMedGoogle Scholar
  8. 8.
    Choi, J. W., H.-C. Kim, and R. Wicker. Multi-material stereolithography. J. Mater. Proc. Technol. 211:318–328, 2011.CrossRefGoogle Scholar
  9. 9.
    Copploe, A., M. Vatani, R. Amini, J. W. Choi, and H. Tavana. Engineered airway models to study liquid plug splitting at bifurcations: effects of orientation and airway size. J. Biomech. Eng. 2018. Scholar
  10. 10.
    Filoche, M., C. F. Tai, and J. B. Grotberg. Three-dimensional model of surfactant replacement therapy. Proc. Natl. Acad. Sci. USA. 112:9287–9292, 2015.CrossRefPubMedGoogle Scholar
  11. 11.
    Fujioka, H., and J. B. Grotberg. Steady propagation of a liquid plug in a two-dimensional channel. J. Biomech. Eng. 126:567–577, 2004.CrossRefPubMedGoogle Scholar
  12. 12.
    Fujioka, H., and J. B. Grotberg. The steady propagation of a surfactant-laden liquid plug in a two-dimensional channel. Phys. Fluids. 17:082102, 2005.CrossRefGoogle Scholar
  13. 13.
    Gaver, D. P., and J. B. Groberg. Droplet spreading on a thin viscous film. J. Fluid Mech. 235:399–414, 1992.CrossRefGoogle Scholar
  14. 14.
    Gaver, III, D. P., R. W. Samsel, and J. Solway. Effects of surface tension and viscosity on airway reopening. J. Appl. Physiol. 69:74–85, 1990.CrossRefPubMedGoogle Scholar
  15. 15.
    Ghadiali, S. N., and D. P. Gaver, 3rd. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions. J. Appl. Physiol. 88:493–506, 2000.CrossRefPubMedGoogle Scholar
  16. 16.
    Grotberg, J. B. Respiratory fluid mechanics and transport processes. Annu. Rev. Biomed. Eng. 3:421–457, 2001.CrossRefPubMedGoogle Scholar
  17. 17.
    Grotberg, J. B. Respiratory fluid mechanics. Phys. Fluids. 23:21301, 2011.CrossRefGoogle Scholar
  18. 18.
    Halpern, D., O. E. Jensen, and J. B. Grotberg. A theoretical study of surfactant and liquid delivery into the lung. J. Appl. Physiol. 85:333–352, 1998.CrossRefPubMedGoogle Scholar
  19. 19.
    Hope, R. L., R. N. Roth, and P. A. Jacobs. Adaptive slicing with sloping layer surfaces. Rapid Prototyp. J. 3:89–98, 1997.CrossRefGoogle Scholar
  20. 20.
    Kitaoka, H., R. Takaki, and B. Suki. A three-dimensional model of the human airway tree. J. Appl. Physiol. 87:2207–2217, 1999.CrossRefPubMedGoogle Scholar
  21. 21.
    Lasalvia, M., S. Castellani, P. D’Antonio, G. Perna, A. Carbone, A. L. Colia, A. B. Maffione, V. Capozzi, and M. Conese. Human airway epithelial cells investigated by atomic force microscopy: a hint to cystic fibrosis epithelial pathology. Exp. Cell Res. 348:46–55, 2016.CrossRefPubMedGoogle Scholar
  22. 22.
    Lewis, J. F., and R. A. Veldhuizen. The future of surfactant therapy during ALI/ARDS. Semin. Respir. Crit. Care Med. 27:377–388, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Lista, G., F. Castoldi, S. Bianchi, and F. Cavigioli. Surfactant and mechanical ventilation. Acta Biomed. 83(Suppl 1):21–23, 2012.PubMedGoogle Scholar
  24. 24.
    Perun, M. L., and D. P. Gaver, 3rd. An experimental model investigation of the opening of a collapsed untethered pulmonary airway. J. Biomech. Eng. 117:245–253, 1995.CrossRefPubMedGoogle Scholar
  25. 25.
    Petrak, D., E. Atefi, L. Yin, W. Chilian, and H. Tavana. Automated, spatio-temporally controlled cell microprinting with polymeric aqueous biphasic system. Biotechnol. Bioeng. 111:404–412, 2014.CrossRefPubMedGoogle Scholar
  26. 26.
    Phalen, R. F., H. C. Yeh, G. M. Schum, and O. G. Raabe. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat. Rec. 190:167–176, 1978.CrossRefPubMedGoogle Scholar
  27. 27.
    Polin, R. A., and W. A. Carlo. Surfactant replacement therapy for preterm and term neonates with respiratory distress. Pediatrics. 133:156–163, 2014.CrossRefPubMedGoogle Scholar
  28. 28.
    Saad, S. M., Z. Policova, E. J. Acosta, and A. W. Neumann. Effect of surfactant concentration, compression ratio and compression rate on the surface activity and dynamic properties of a lung surfactant. Biochim. Biophys. Acta. 103–16:2012, 1818.Google Scholar
  29. 29.
    Sabourin, E., S. A. Houser, and J. H. Bøhn. Adaptive slicing using stepwise uniform refinement. Rapid Prototyp. J. 2:20–26, 1996.CrossRefGoogle Scholar
  30. 30.
    Sauret, V., P. M. Halson, I. W. Brown, J. S. Fleming, and A. G. Bailey. Study of the three-dimensional geometry of the central conducting airways in man using computed tomographic (CT) images. J. Anat. 200:123–134, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Stevens, T. P., and R. A. Sinkin. Surfactant replacement therapy. Chest. 131:1577–1582, 2007.CrossRefPubMedGoogle Scholar
  32. 32.
    Szpinda, M., M. Daroszewski, A. Wozniak, A. Szpinda, and C. Mila-Kierzenkowska. Tracheal dimensions in human fetuses: an anatomical, digital and statistical study. Surg. Radiol. Anat. 34:317–323, 2012.CrossRefPubMedGoogle Scholar
  33. 33.
    Tavana, H., D. Huh, J. B. Groberg, and S. Takayama. Microfluidics, lung surfactant, and respiratory disorders. Lab. Med. 40:203–209, 2009.CrossRefGoogle Scholar
  34. 34.
    Tavana, H., C. H. Kuo, Q. Y. Lee, B. Mosadegh, D. Huh, P. J. Christensen, J. B. Grotberg, and S. Takayama. Dynamics of liquid plugs of buffer and surfactant solutions in a micro-engineered pulmonary airway model. Langmuir. 26:3744–3752, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Veldhuizen, E. J., and H. P. Haagsman. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim. Biophys. Acta. 1467:255–270, 2000.CrossRefPubMedGoogle Scholar
  36. 36.
    Weibel, E. R., and D. M. Gomez. Architecture of the human lung. Use of quantitative methods establishes fundamental relations between size and number of lung structures. Science. 137:577–585, 1962.CrossRefPubMedGoogle Scholar
  37. 37.
    West, J. B. Respiratory Physiology: The Essentials. Oxford: Blackwell Scientific, 2015.Google Scholar
  38. 38.
    Zheng, Y., H. Fujioka, J. C. Grotberg, and J. B. Grotberg. Effects of inertia and gravity on liquid plug splitting at a bifurcation. J. Biomech. Eng. 128:707–716, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe University of AkronAkronUSA
  2. 2.Department of Mechanical EngineeringThe University of AkronAkronUSA

Personalised recommendations