Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 5, pp 1203–1211 | Cite as

Design and Implementation of a Novel Subject-Specific Neurofeedback Evaluation and Treatment System

  • Gil Issachar
  • Tami Bar-Shalita
  • Yair Baruch
  • Bar Horing
  • Sigal PortnoyEmail author
Article

Abstract

Electroencephalography (EEG)-based neurofeedback (NF) is a safe, non-invasive, non-painful method for treating various conditions. Current NF systems enable the selection of only one NF parameter, so that two parameters cannot be feedback simultaneously. Consequently, the ability to individually-tailor the treatment to a patient is limited, and treatment efficiency may therefore be compromised. We aimed to design, implement and test an all-in-one, novel, computerized platform for closed-loop NF treatment, based on principles from learning theories. Our prototype performs numeric evaluation based on quantifying resting EEG and event-related EEG responses to various sensory stimuli. The NF treatment was designed according to principles of efficient learning, and implemented as a gradual, patient-adaptive 1D or 2D computer game, that utilizes automatic EEG feature extraction. Verification was performed as we compared the mean area under curve (AUC) of the theta band of a dozen subjects staring at a wall or performing the NF. Most of the subjects (75%) increased their theta band AUC during the NF session compared with the trial staring at the wall (p = 0.041). Our system enables multiple feature selection and its machine learning capabilities allow an accurate discovery of patient-specific biomarkers and treatment targets. Its novel characteristics may allow for improved evaluation of patients and treatment outcomes.

Keywords

Electroencephalography Event related potentials Quantitative EEG Resting EEG Neurofeedback Learning 

Notes

References

  1. 1.
    Alkoby, O., A. Abu-Rmileh, O. Shriki, and D. Todder. Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience 378:155–164, 2018.CrossRefGoogle Scholar
  2. 2.
    Arns, M., S. de Ridder, U. Strehl, M. Breteler, and A. Coenen. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40:180–189, 2009.CrossRefGoogle Scholar
  3. 3.
    Arns, M., and J. L. Kenemans. Neurofeedback in ADHD and insomnia: vigilance stabilization through sleep spindles and circadian networks. Neurosci. Biobehav. Rev. 44:183–194, 2014.CrossRefGoogle Scholar
  4. 4.
    Baehr, E., J. P. Rosenfeld, and R. Baehr. The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression. J. Neurother. 2:10–23, 1997.CrossRefGoogle Scholar
  5. 5.
    Blankertz, B., G. Dornhege, M. Krauledat, K.-R. Muller, V. Kunzmann, F. Losch, and G. Curio. The Berlin brain–computer interface: EEG-based communication without subject training. IEEE Trans. Neural Syst. Rehabil. Eng. 14:147–152, 2006.CrossRefGoogle Scholar
  6. 6.
    Boecker, R., N. E. Holz, A. F. Buchmann, D. Blomeyer, M. M. Plichta, I. Wolf, S. Baumeister, A. Meyer-Lindenberg, T. Banaschewski, D. Brandeis, and M. Laucht. Impact of early life adversity on reward processing in young adults: EEG–fMRI results from a prospective study over 25 years. PLoS ONE 9:e104185, 2014.CrossRefGoogle Scholar
  7. 7.
    Calderon, K. S., and W. W. Thompson. Biofeedback relaxation training: a rediscovered mind–body tool in public health. Am. J. Health Stud. 19:185–194, 2004.Google Scholar
  8. 8.
    Choobforoushzadeh, A., H. T. Neshat-Doost, H. Molavi, and M. R. Abedi. Effect of neurofeedback training on depression and fatigue in patients with multiple sclerosis. Appl. Psychophysiol. Biofeedback 40:1–8, 2015.CrossRefGoogle Scholar
  9. 9.
    deBeus, R. J., and D. A. Kaiser. Neurofeedback with children with attention deficit hyperactivity disorder: a randomized double-blind placebo-controlled study. In: Neurofeedback and Neuromodulation Techniques and Applications, edited by R. Coben, and J. R. Evans. New York: Academic, 2011, pp. 127–152.CrossRefGoogle Scholar
  10. 10.
    Egner, T., and J. H. Gruzelier. Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance. Neuroreport 14:1221–1224, 2003.CrossRefGoogle Scholar
  11. 11.
    Friedrich, E. V. C., G. Wood, R. Scherer, and C. Neuper. Mind over brain, brain over mind: cognitive causes and consequences of controlling brain activity. Front. Hum. Neurosci. 8:348, 2014.CrossRefGoogle Scholar
  12. 12.
    Friel, P. N. EEG biofeedback in the treatment of attention deficit hyperactivity disorder. Altern. Med. Rev. 12:146–151, 2007.Google Scholar
  13. 13.
    Gevensleben, H., B. Holl, B. Albrecht, C. Vogel, D. Schlamp, O. Kratz, P. Studer, A. Rothenberger, G. H. Moll, and H. Heinrich. Is neurofeedback an efficacious treatment for ADHD? A randomised controlled clinical trial. J. Child Psychol. Psychiatry 50:780–789, 2009.CrossRefGoogle Scholar
  14. 14.
    Gevensleben, H., G. H. Moll, A. Rothenberger, and H. Heinrich. Neurofeedback in attention-deficit/hyperactivity disorder—different models, different ways of application. Front. Hum. Neurosci. 8:846, 2014.Google Scholar
  15. 15.
    Gevensleben, H., A. Rothenberger, G. H. Moll, and H. Heinrich. Neurofeedback in children with ADHD: validation and challenges. Expert Rev. Neurother. 12:447–460, 2012.CrossRefGoogle Scholar
  16. 16.
    Gruzelier, J. H. EEG-neurofeedback for optimising performance. II: creativity, the performing arts and ecological validity. Neurosci. Biobehav. Rev. 44:142–158, 2014.CrossRefGoogle Scholar
  17. 17.
    Gruzelier, J. H. EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44:124–141, 2014.CrossRefGoogle Scholar
  18. 18.
    Heinrich, H., H. Gevensleben, and U. Strehl. Annotation: neurofeedback—train your brain to train behaviour. J. Child Psychol. Psychiatry 48:3–16, 2007.CrossRefGoogle Scholar
  19. 19.
    Hurt, E., L. E. Arnold, and N. Lofthouse. Quantitative EEG neurofeedback for the treatment of pediatric attention-deficit/hyperactivity disorder, autism spectrum disorders, learning disorders, and epilepsy. Child Adolesc. Psychiatr. Clin. N. Am. 23:465–486, 2014.CrossRefGoogle Scholar
  20. 20.
    Klimesch, W. EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26:319–340, 1997.CrossRefGoogle Scholar
  21. 21.
    Kropotov, J. Event-Related Potentials and Neurotherapy. San Diego: Academic, 2009.Google Scholar
  22. 22.
    Kubik, A., and A. Biedroń. Neurofeedback therapy in patients with acute and chronic pain syndromes—literature review and own experience. Prz. Lek. 70:440–442, 2013.Google Scholar
  23. 23.
    Lackner, N., H.-F. Unterrainer, D. Skliris, S. Shaheen, M. Dunitz-Scheer, G. Wood, P. J. Z. Scheer, S. J. Wallner-Liebmann, and C. Neuper. EEG neurofeedback effects in the treatment of adolescent anorexia nervosa. Eat. Disord. 24:354–374, 2016.CrossRefGoogle Scholar
  24. 24.
    Landers, D. M., S. J. Petruzzello, W. Salazar, D. J. Crews, K. A. Kubitz, T. L. Gannon, and M. Han. The influence of electrocortical biofeedback on performance in pre-elite archers. Med. Sci. Sports Exerc. 23:123–129, 1991.CrossRefGoogle Scholar
  25. 25.
    Marzbani, H., H. R. Marateb, and M. Mansourian. Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7:143–158, 2016.Google Scholar
  26. 26.
    May, G., R. Benson, R. Balon, and N. Boutros. Neurofeedback and traumatic brain injury: a literature review. Ann. Clin. Psychiatry 25:289–296, 2013.Google Scholar
  27. 27.
    Monastra, V. Electroencephalographic biofeedback (neurotherapy) as a treatment for attention deficit hyperactivity disorder: rationale and empirical foundation. Child Adolesc. Psychiatr. Clin. N. Am. 14:55–82, 2005.CrossRefGoogle Scholar
  28. 28.
    Perreau-Linck, E., N. Lessard, J. Lévesque, and M. Beauregard. Effects of neurofeedback training on inhibitory capacities in ADHD children: a single-blind, randomized, placebo-controlled study. J. Neurother. 14:229–242, 2010.CrossRefGoogle Scholar
  29. 29.
    Platt, J. C., and J. C. Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 61–74, 1999. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639.
  30. 30.
    Reiner, M., J. Gruzelier, P. D. Bamidis, and T. Auer. The science of neurofeedback: learnability and effects. Neuroscience 378:1–10, 2018.CrossRefGoogle Scholar
  31. 31.
    Rozengurt, R., A. Barnea, S. Uchida, and D. A. Levy. Theta EEG neurofeedback benefits early consolidation of motor sequence learning. Psychophysiology 53:965–973, 2016.CrossRefGoogle Scholar
  32. 32.
    Sherlin, L. H., M. Arns, J. Lubar, H. Heinrich, U. Strehl, and M. B. Sterman. Neurofeedback and basic learning theory: implications for research and practice. 2011.  https://doi.org/10.1080/10874208.2011.623089.
  33. 33.
    Sitaram, R., T. Ros, L. Stoeckel, S. Haller, F. Scharnowski, J. Lewis-Peacock, N. Weiskopf, M. L. Blefari, M. Rana, E. Oblak, N. Birbaumer, and J. Sulzer. Closed-loop brain training: the science of neurofeedback. Nat. Rev. Neurosci. 18:86–100, 2017.CrossRefGoogle Scholar
  34. 34.
    Vernon, D. J. Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Appl. Psychophysiol. Biofeedback 30:347–364, 2005.CrossRefGoogle Scholar
  35. 35.
    Vernon, D., T. Egner, N. Cooper, T. Compton, C. Neilands, A. Sheri, and J. Gruzelier. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. Int. J. Psychophysiol. 47:75–85, 2003.CrossRefGoogle Scholar
  36. 36.
    Vidaurre, C., C. Sannelli, K.-R. Müller, and B. Blankertz. Machine-learning-based coadaptive calibration for brain–computer interfaces. Neural Comput. 23:791–816, 2011.CrossRefGoogle Scholar
  37. 37.
    Wang, T., D. Mantini, and C. R. Gillebert. The potential of real-time fMRI neurofeedback for stroke rehabilitation: a systematic review. Cortex 2017.  https://doi.org/10.1016/j.cortex.2017.09.006.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Biomedical Engineering Department, Faculty of EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.Occupational Therapy Department, School of Health Professions, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations