Spatiotemporal Complexity of the Aortic Sinus Vortex as a Function of Leaflet Calcification

  • Hoda Hatoum
  • Lakshmi Prasad DasiEmail author


Several studies have shown the variation of aortic sinus structures’ hemodynamics with different flow and geometric characteristics. They have also correlated aortic sinus hemodynamics with the progression and evolution of calcific aortic valve disease (CAVD). This study aims at visualizing aortic sinus fluid structure variations as functions of different leaflet calcification degrees and assessing their potential relationship with CAVD. A degenerated 23 mm Carpentier-Edwards Perimount Magna valve extracted from a redo-surgery patient was implanted in an aortic root model and tested in a pulse duplicator left heart simulator. The valve has 3 leaflets with 3 different levels of calcium distribution: mild, moderate and severe. High-speed imaging and particle image velocimetry were performed to assess sinus vortices, leaflet tip position and velocity along with shear stress. Results have shown that (a) aortic sinus vortices initiation, entrapment and evolution varied with different calcified leaflet exposure; (b) higher velocities in the sinus were calculated with the mildly calcified leaflet compared to the moderately and severely calcified ones; (c) during systole, the mildly calcified leaflet sinus case shows the most spread-out and higher ranges of shear stress probabilities and highest magnitudes going from (− 1.5 to + 1.8 Pa) compared with (− 1.0 to + 1.0 Pa) for moderately and severely calcified leaflets. The higher the calcification degree the lower the shear stress range and likelihoods of having higher shear stress. This holds in diastole as well. This study shows the impact of calcification on the aortic sinus flow structures.


Calcific aortic valve disease CAVD Sinus hemodynamics Aortic sinus vortex Shear stress 


Conflict of interest

Dr. Dasi reports having a patent application filed on novel polymeric valves, vortex generators and superhydrophobic surfaces.


The research done was partly supported by National Institutes of Health (NIH) under Award Number R01HL119824.

Supplementary material

Video 1: Streak plots of the 3 different sinuses throughout the cardiac cycle. Supplementary material 1 (MP4 3787 kb)

Video 2: En-face imaging of the valve throughout the cardiac cycle. Supplementary material 2 (MP4 4031 kb)


  1. 1.
    Balachandran, K., P. Sucosky, and A. P. Yoganathan. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int. J. Inflamm. 2011. Scholar
  2. 2.
    Bapat, V., Valve in Valve app. 2015(2.0), 2015Google Scholar
  3. 3.
    Baumgartner, H., J. Hung, J. Bermejo, J. B. Chambers, A. Evangelista, B. P. Griffin, B. Iung, C. M. Otto, P. A. Pellikka, and M. Quiñones. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22(1):1–23, 2009.CrossRefGoogle Scholar
  4. 4.
    Bellhouse, B. Velocity and pressure distributions in the aortic valve. J. Fluid Mech. 37(3):587–600, 1969.CrossRefGoogle Scholar
  5. 5.
    Bellhouse, B. J., and L. Talbot. The fluid mechanics of the aortic valve. J. Fluid Mech. 35(4):721–735, 1969.CrossRefGoogle Scholar
  6. 6.
    Butcher, J. T., S. Tressel, T. Johnson, D. Turner, G. Sorescu, H. Jo, and R. M. Nerem. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26(1):69–77, 2006.CrossRefGoogle Scholar
  7. 7.
    David, T. E., and J. Ivanov. Is degenerative calcification of the native aortic valve similar to calcification of bioprosthetic heart valves? J. Thorac. Cardiovasc. Surg. 126(4):939–941, 2003.CrossRefGoogle Scholar
  8. 8.
    Fukui, T., and K. Morinishi. Influence of vortices in the sinus of valsalva on local wall shear stress distribution. Int. J. Life Sci. Med. Res. 3(3):94, 2013.CrossRefGoogle Scholar
  9. 9.
    Green, S. Fluid Vortices, Vol. 30. New York: Springer, 2012.Google Scholar
  10. 10.
    Hatoum, H., and L. Dasi. Sinus hemodynamics in representative stenotic native bicuspid and tricuspid aortic valves: an in vitro study. Fluids 3(3):56, 2018.CrossRefGoogle Scholar
  11. 11.
    Hatoum, H., and L. P. Dasi. Reduction of pressure gradient and turbulence using vortex generators in prosthetic heart valves. Ann. Biomed. Eng. 2018. Scholar
  12. 12.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Implantation depth and rotational orientation effect on valve-in-valve hemodynamics and sinus flow. Ann Thorac. Surg. 106:70–78, 2018.CrossRefGoogle Scholar
  13. 13.
    Hatoum, H., J. Dollery, S. M. Lilly, J. Crestanello, and L. P. Dasi. Impact of patient-specific morphologies on sinus flow stasis in transcatheter aortic valve replacement: an in vitro study. J. Thorac. Cardiovasc. Surg. 157:540–549, 2018.CrossRefGoogle Scholar
  14. 14.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Sinus hemodynamics variation with tilted transcatheter aortic valve deployments. Ann. Biomed. Eng. 47(1):75–84, 2018.CrossRefGoogle Scholar
  15. 15.
    Hatoum, H., J. Dollery, S. M. Lilly, J. A. Crestanello, and L. P. Dasi. Effect of severe bioprosthetic valve tissue ingrowth and inflow calcification on valve-in-valve performance. J. Biomech. 74:171–179, 2018.CrossRefGoogle Scholar
  16. 16.
    Hatoum, H., F. Heim, and L. P. Dasi. Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J. Mech. Behav. Biomed. Mater. 2018. Scholar
  17. 17.
    Hatoum, H., B. L. Moore, and L. P. Dasi. On the significance of systolic flow waveform on aortic valve energy loss. Ann. Biomed. Eng. 46:2102–2111, 2018.CrossRefGoogle Scholar
  18. 18.
    Hatoum, H., B. L. Moore, P. Maureira, J. Dollery, J. A. Crestanello, and L. P. Dasi. Aortic sinus flow stasis likely in valve-in-valve transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 154(1):32–43, 2017.CrossRefGoogle Scholar
  19. 19.
    Hatoum, H., A. Yousefi, S. Lilly, P. Maureira, J. Crestanello, and L. P. Dasi. An In-vitro evaluation of turbulence after transcatheter aortic valve implantation. J. Thorac. Cardiovasc. Surg. 156:1837–1848, 2018.CrossRefGoogle Scholar
  20. 20.
    Hjortnaes, J., and E. Aikawa, Calcific aortic valve disease. In: Aortic Valve. InTech, 2011Google Scholar
  21. 21.
    Keele, K. D. Leonardo da vinci as physiologist. Postgrad. Med. J. 28(324):521, 1952.CrossRefGoogle Scholar
  22. 22.
    Lincoln, J., and V. Garg. Etiology of valvular heart disease. Circulation 78(8):1801–1807, 2014.CrossRefGoogle Scholar
  23. 23.
    Moore, B., and L. P. Dasi. Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 55(7):1770, 2014.CrossRefGoogle Scholar
  24. 24.
    Moore, B. L., and L. P. Dasi. Coronary flow impacts aortic leaflet mechanics and aortic sinus hemodynamics. Ann. Biomed. Eng. 43(9):2231–2241, 2015.CrossRefGoogle Scholar
  25. 25.
    Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. O’brien. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90(2):844–853, 1994.CrossRefGoogle Scholar
  26. 26.
    Peacock, J. A. An in vitro study of the onset of turbulence in the sinus of valsalva. Circul. Res. 67:448–460, 1990.CrossRefGoogle Scholar
  27. 27.
    Peskin, C., and A. Wolfe. The aortic sinus vortex. In: Federation Proceedings, 1978Google Scholar
  28. 28.
    Rajamannan, N. M., R. O. Bonow, and S. H. Rahimtoola. Calcific aortic stenosis: an update. Nat. Rev. Cardiol. 4(5):254, 2007.CrossRefGoogle Scholar
  29. 29.
    Reul, H., N. Talukder, and E. Mu. Fluid mechanics of the natural mitral valve. J. Biomech. 14(5):361–372, 1981.CrossRefGoogle Scholar
  30. 30.
    Sathyamurthy, I., and S. Alex. Calcific aortic valve disease: is it another face of atherosclerosis? Indian Heart J. 67(5):503–506, 2015.CrossRefGoogle Scholar
  31. 31.
    Skowasch, D., S. Schrempf, N. Wernert, M. Steinmetz, A. Jabs, I. Tuleta, U. Welsch, C. J. Preusse, J. A. Likungu, and A. Welz. Cells of primarily extravalvular origin in degenerative aortic valves and bioprostheses. Eur. Heart J. 26(23):2576–2580, 2005.CrossRefGoogle Scholar
  32. 32.
    Stewart, B. F., D. Siscovick, B. K. Lind, J. M. Gardin, J. S. Gottdiener, V. E. Smith, D. W. Kitzman, and C. M. Otto. Clinical factors associated with calcific aortic valve disease. J. Am. Coll. Cardiol. 29(3):630–634, 1997.CrossRefGoogle Scholar
  33. 33.
    Sun, L., S. Chandra, and P. Sucosky. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. PLoS ONE 7(10):e48843, 2012.CrossRefGoogle Scholar
  34. 34.
    Tennekes, H., J. L. Lumley, and J. Lumley. A first course in turbulence. Cambridge: MIT press, 1972.Google Scholar
  35. 35.
    Thubrikar, M., L. Bosher, and S. Nolan. The mechanism of opening of the aortic valve. J. Thorac. Cardiovasc. Surg. 77(6):863–870, 1979.Google Scholar
  36. 36.
    Toninato, R., J. Salmon, F. M. Susin, A. Ducci, and G. Burriesci. Physiological vortices in the sinuses of Valsalva: an in vitro approach for bio-prosthetic valves. J. Biomech. 49(13):2635–2643, 2016.CrossRefGoogle Scholar
  37. 37.
    Towler, D. A. Molecular and cellular aspects of calcific aortic valve disease. Circ. Res. 113(2):198–208, 2013.CrossRefGoogle Scholar
  38. 38.
    Van Steenhoven, A., P. Veenstra, and R. Reneman. The effect of some hemodynamic factors on the behaviour of the aortic valve. J. Biomech. 15(12):941–950, 1982.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Division of Cardiac SurgeryThe Ohio State UniversityColumbusUSA

Personalised recommendations