Regeneration of Diabetic Foot Ulcers Based on Therapy with Red LED Light and a Natural Latex Biomembrane

  • S. S. R. F. RosaEmail author
  • M. F. F. Rosa
  • M. P. Marques
  • G. A. Guimarães
  • B. C. Motta
  • Y. C. L. Macedo
  • P. Inazawa
  • A. Dominguez
  • F. S. Macedo
  • C. A. P. Lopes
  • A. F. da Rocha


This study analyzes the effects of the Rapha® system, which employs red light therapy (RLT) and a natural latex biomembrane in the healing of neuropathic ulcers associated with the diabetic foot. We conducted a randomized, controlled, blinded clinical trial with 15 participants that were divided into three groups (GI, GII and GIII): (i) Rapha® system application by the participant and a health professional at home, with clinical status evaluation every 2 weeks at the hospital (GI); (ii) standard protocol used in Brazil, performed by a health professional at the hospital (GII; control); and (iii) the Rapha® system applied by the participant at home and clinical status evaluation every 2 weeks at the hospital (GIII). We used image processing techniques on photographic recordings of the lesions, and several statistical tests were used to analyze the data, allowing for the comparison of the average results for all groups. The average healing rates of GI, GII, and GIII were 77.0, 51.4, and 80%, respectively. The granulation tissue evaluation indicated a higher efficacy in the tissue repair of lesions treated with the Rapha® system. In conclusion, the Rapha® system proved to be an effective healing system, even when self-applied at the patient’s home.


Phototherapy Wound healing Chronic ulcers Latex 



This research was supported by the Ministry of Health of Brazil (CNPq). Funding was provided by Ministry of Health Brazil (Grant No. TC 128 e TC 129), Coordenação de Aperfeicoamento de Pessoal de Nível Superior (scholarship), Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) (PQ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (DT - Level 2).

Conflict of interest

The following authors have intellectual property claims related to the work: S. S. R. F. Rosa, M. F. F. Rosa, and A. F. da Rocha.


  1. 1.
    Bonfá, A. F., R. H. C. Nomura, A. M. B. D. Prado, A. B. D. Silveira, L. P. T. C. Dornbusch, and P. T. Dornbusch. Effect of platelet-rich plasma gel on graft skin healing in equines. Cienc. Anim. Bras. 18:1–11, 2017.Google Scholar
  2. 2.
    Borges, F. A., L. F. A. Bolognesi, A. Trecco, B. D. C. Drago, L. B. D. Arruda, P. N. L. Filho, E. G. Pierri, C. F. D. O. Graeff, A. G. D. Santos, and M. C. R. Miranda. Natural rubber latex: study of a novel carrier for Casearia sylvestris Swartz delivery. ISRN Polymer Sci. 1–5:2014, 2014.Google Scholar
  3. 3.
    Brazilian Association of Technical Standards. NBR IEC 60601-1: Electromedical Equipment - Part 1: General Requirements for Basic Safety and Essential Performance. Sao Paulo: Brazilian Association of Technical Standards, 2010.Google Scholar
  4. 4.
    Brem, H., R. S. Kirsner, and V. Falanga. Protocol for the successful treatment of venous ulcers. Am. J. Surg. 188:1–8, 2004.CrossRefGoogle Scholar
  5. 5.
    Chhabra, S., N. Chhabra, A. Kaur, and N. Gupta. Wound healing concepts in clinical practice of OMFS. J. Maxillofac. Oral Surg. 16:403–423, 2017.CrossRefGoogle Scholar
  6. 6.
    Dong, J., and D. Xiong. Applications of light emitting diodes in health care. Ann. Biomed. Eng. 45:2509–2523, 2017.CrossRefGoogle Scholar
  7. 7.
    Ferreira, A. M., B. M. D. Souza, M. A. Rigotti, and M. R. Loureiro. The use of fatty acids in wound care: an integrative review of the Brazilian literature. Rev. Esc. Enferm. USP 46:752–760, 2012.CrossRefGoogle Scholar
  8. 8.
    Gulsoy, M., G. H. Ozer, O. Bozkulak, H. O. Tabakoglu, E. Aktas, G. Deniz, and C. Ertan. The biological effects of 632.8-nm low energy He-Ne laser on peripheral blood mononuclear cells in vitro. J. Photochem. Photobiol. B 82:199–202, 2006.CrossRefGoogle Scholar
  9. 9.
    Iizaka, S., T. Kaitani, J. Sugama, G. Nakagami, A. Naito, H. Koyanagi, C. Konya, and H. Sanada. Predictive validity of granulation tissue color measured by digital image analysis for deep pressure ulcer healing: a multicenter prospective cohort study. Wound Repair Regen. 21:25–34, 2013.CrossRefGoogle Scholar
  10. 10.
    Lin, P., and T. Phillips. Ulcers. In: Dermatology, edited by J. L. Bolognia, J. L. Jorizzo, and R. P. Rapini. New York: Mosby, 2003, pp. 1631–1649.Google Scholar
  11. 11.
    López-Delis, A., S. D. S. R. F. Rosa, P. E. N. D. Souza, M. L. B. Carneiro, M. F. F. Rosa, Y. C. L. Macedo, F. H. Veiga-Souza, and A. F. D. Rocha. Characterization of the cicatrization process in diabetic foot ulcers based on the production of reactive oxygen species. J. Diabetes Res. 1:1–2, 2018. Scholar
  12. 12.
    Mertz, P. M., and W. H. Eaglstein. The effect of a semiocclusive dressing on the microbial population in superficial wounds. Arch. Surg. 119:287–289, 1984.CrossRefGoogle Scholar
  13. 13.
    Minatel, D. G., C. S. Enwemeka, S. C. Franca, and M. A. Frade. Phototherapy (LEDs 660/890 nm) in the treatment of leg ulcers in diabetic patients: case study. An. Bras. Dermatol. 84:279–283, 2009.CrossRefGoogle Scholar
  14. 14.
    Ministry of Health, Healthcare Bureau, Department of Strategical Program Actions. Brazil. Guidelines for the Care of Amputees/Ministry of Health, Healthcare Bureau, Department of Strategical Program Actions. Brasília: Ministry of Health (in portuguese), 2013Google Scholar
  15. 15.
    Ministry of Health, Healthcare Bureau, Department of Basic Care, Brasil. Manual of the Diabetic Foot: Strategies for the Care of People with Chronic Diseases/Ministry of Health, Healthcare Bureau, Department of Basic Care. Brasília: Ministry of Health, 2016.Google Scholar
  16. 16.
    Mrue, F., J. C. Netto, R. Ceneviva, J. J. Lachat, J. A. Thomazini, and H. Tambelini. Evaluation of the biocompatibility of a new biomembrane. Mater. Res. 7:277–283, 2004.CrossRefGoogle Scholar
  17. 17.
    National Pressure Ulcer Advisory Panel, European Pressure Ulcer Advisory Panel and Pan Pacific Pressure Injury Alliance. Prevention and Treatment of Pressure Ulcers: Quick Reference Guide. Perth: Cambridge Media, 2013.Google Scholar
  18. 18.
    Nunes, G. A. M. A., M. C. D. Reis, M. F. F. Rosa, L. R. T. Peixoto, A. F. D. Rocha, and S. S. R. F. Rosa. A system for treatment of diabetic foot ulcers using led irradiation and natural latex. Res. Biomed. Eng. 32:3–13, 2016.CrossRefGoogle Scholar
  19. 19.
    Oliveira, J. M. D., and L. H. I. Mei. Nonionic reactive surfactants in emulsion polymerization of vinyl acetate—vinyl neodecanoate latexes: influence on the water barrier properties. Polímeros 19:22–30, 2009.CrossRefGoogle Scholar
  20. 20.
    O’Meara, S., N. Cullum, E. A. Nelson, and J. C. Dumville. Compression for venous leg ulcers. Cochrane Database Syst. Rev 11:Cd000265, 2012.Google Scholar
  21. 21.
    Panhoca, V. H., F. L. Rde, S. C. Nunez, R. C. Pizzo, C. Grecco, F. R. Paolillo, and V. S. Bagnato. Comparative clinical study of light analgesic effect on temporomandibular disorder (TMD) using red and infrared led therapy. Lasers Med. Sci. 30:815–822, 2015.CrossRefGoogle Scholar
  22. 22.
    Percival, S. L., and L. Suleman. Slough and biofilm: removal of barriers to wound healing by desloughing. J. Wound Care 24:498–510, 2015.CrossRefGoogle Scholar
  23. 23.
    Raulf, M. The latex story. Chem. Immunol Allergy 100:248–255, 2014.CrossRefGoogle Scholar
  24. 24.
    Rosyid, F. N. Etiology, pathophysiology, diagnosis and management of diabetics’ foot ulcer. Int. J. Res. Med. Sci. 5:4206–4213, 2017.CrossRefGoogle Scholar
  25. 25.
    Stokes, A., K. M. Berry, Z. McHiza, W. A. Parker, D. Labadarios, L. Chola, C. Hongoro, K. Zuma, A. T. Brennan, P. C. Rockers, and S. Rosen. Prevalence and unmet need for diabetes care across the care continuum in a national sample of South African adults: evidence from the SANHANES-1, 2011-2012. PLoS ONE 12:e0184264, 2017.CrossRefGoogle Scholar
  26. 26.
    Toscano, C. M., T. H. Sugita, M. Q. M. Rosa, H. C. Pedrosa, R. D. S. Rosa, and L. R. Bahia. Annual direct medical costs of diabetic foot disease in Brazil: a cost of illness study. Int. J. Environ. Res. Public Health 2018. Scholar
  27. 27.
    Tripathi, B. K., and A. K. Srivastava. Diabetes mellitus: complications and therapeutics. Med. Sci. Monit. 12:RA130–RA147, 2006.Google Scholar
  28. 28.
    Walker, M. D., S. Rumpf, G. D. Baxter, D. G. Hirst, and A. S. Lowe. Effect of low-intensity laser irradiation (660 nm) on a radiation-impaired wound-healing model in murine skin. Lasers Surg. Med. 26:41–47, 2000.CrossRefGoogle Scholar
  29. 29.
    Wang, H. T., J. Q. Yuan, B. Zhang, M. L. Dong, C. Mao, and D. Hu. Phototherapy for treating foot ulcers in people with diabetes. Cochrane Database Syst. Rev. 6:CD011979, 2017.Google Scholar
  30. 30.
    Wu, Y., Y. Ding, Y. Tanaka, and W. Zhang. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci. 11:1185–1200, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Biomedical Engineering ProgramFaculty of GamaBrasíliaBrazil
  2. 2.Pos Doc Health Sciences and Technologies - Postgraduate Program in Health Sciences and Technologies of the Faculty of CeilândiaUniversity of BrasiliaCeilândiaBrazil
  3. 3.Biomedical Engineering Program, Faculty of GamaUniversity of BrasiliaBrasíliaBrazil
  4. 4.Postgraduate Program in Health Sciences and Technologies of the Faculty of CeilândiaUniversity of BrasiliaCeilândiaBrazil
  5. 5.Medical Sciences Program, Faculty of MedicineUniversity of BrasiliaBrasíliaBrazil
  6. 6.Department of Cell Biology, Institute of BiologyUniversity of BrasiliaBrasíliaBrazil
  7. 7.Electronics and Automation Systems Engineering ProgramDepartment of Electrical EngineeringBrasíliaBrazil
  8. 8.BrasíliaBrazil

Personalised recommendations