Annals of Biomedical Engineering

, Volume 47, Issue 5, pp 1265–1280 | Cite as

Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle

  • Vi Vu
  • Lorenzo Rossini
  • Ricardo Montes
  • Josue Campos
  • Juyeun Moon
  • Pablo Martinez-Legazpi
  • Javier Bermejo
  • Juan C. del Álamo
  • Karen May-NewmanEmail author


Dilated cardiomyopathy produces abnormal left ventricular (LV) blood flow patterns that are linked with thromboembolism (TE). We hypothesized that implantation of mechanical heart valves non-trivially influences TE risk in these patients, exacerbating abnormal LV flow dynamics. The goal of this study was to assess how mitral valve design impacts flow and hemodynamic factors associated with TE. The mid-plane velocity field of a silicone dilated LV model was measured in a mock cardiovascular loop for three different mitral prostheses, two with multiple orientations, and used to characterize LV vortex properties through the cardiac cycle. Blood residence time and a platelet shear activation potential index (SAP) based on the cumulative exposure to shear were also computed. The porcine bioprosthesis (BP) and the bileaflet valve in the anti-anatomical (BL-AA) position produced the most natural flow patterns. The bileaflet valves experienced large shear in the valve hinges and recirculating shear-activated flow, especially in the anatomical (BL-A) and 45-degree (BL-45) positions, thus exhibited high SAP. The tilting disk valve in the septal orientation (TD-S) produced a complete reversal of flow and vortex properties, impairing LV washout and retaining shear-activated fluid, leading to the highest residence time and SAP. In contrast, the tilting disk valve in the free-wall position (TD-F) exhibited mid-range values for residence time and SAP. Hence, the thrombogenic potential of different MHV models and configurations can be collectively ranked from lowest to highest as: BP, BL-AA, TD-F, BL-A, BL-45, and TD-S. These findings provide new insight about the effect of fluid dynamics on LV TE risk, and suggest that the bioprosthesis valve in the mitral position minimizes this risk by producing more physiological flow patterns in patients with dilated cardiomyopathy.


Prosthesis mitral valve Intraventricular flow Vortex trajectories Flow residence time and shear rate Thromboembolic event 


Supplementary material

10439_2019_2218_MOESM1_ESM.mp4 (18.7 mb)
Supplementary material 1 (MP4 19192 kb)
10439_2019_2218_MOESM2_ESM.mp4 (10.4 mb)
Supplementary material 2 (MP4 10614 kb)
10439_2019_2218_MOESM3_ESM.mp4 (18.3 mb)
Supplementary material 3 (MP4 18,739 kb)
10439_2019_2218_MOESM4_ESM.mp4 (11 mb)
Supplementary material 4 (MP4 11,249 kb)
10439_2019_2218_MOESM5_ESM.mp4 (11.4 mb)
Supplementary material 5 (MP4 11,638 kb)
10439_2019_2218_MOESM6_ESM.mp4 (9.6 mb)
Supplementary material 6 (MP4 9880 kb)
10439_2019_2218_MOESM7_ESM.mp4 (8.4 mb)
Supplementary material 7 (MP4 8608 kb)
10439_2019_2218_MOESM8_ESM.mp4 (7.8 mb)
Supplementary material 8 (MP4 8019 kb)
10439_2019_2218_MOESM9_ESM.mp4 (14.7 mb)
Supplementary material 9 (MP4 15,012 kb)
10439_2019_2218_MOESM10_ESM.mp4 (9.2 mb)
Supplementary material 10 (MP4 9396 kb)
10439_2019_2218_MOESM11_ESM.mp4 (20.3 mb)
Supplementary material 11 (MP4 20,740 kb)
10439_2019_2218_MOESM12_ESM.mp4 (11.5 mb)
Supplementary material 12 (MP4 11,823 kb)


  1. 1.
    Acker, M. A., M. Jessup, S. F. Bolling, J. Oh, R. C. Starling, D. L. Mann, H. N. Sabbah, R. Shemin, J. Kirklin, and S. H. Kubo. Mitral valve repair in heart failure: Five-year follow-up from the mitral valve replacement stratum of the Acorn randomized trial. J. Thorac. Cardiovasc. Surg. 142:569–574, 2011.CrossRefPubMedGoogle Scholar
  2. 2.
    Benito, Y., Y. Martinez-Legazpi, L. Rossini, C. Perez del Villar, R. Yotti, Y. Martin Peinador, D. Rodriguez-Perez, C. Medrano, J. C. Antoranz, F. Fernandez-Aviles, J. C. del Alamo, J. Bermejo. Residence time and shear-stress of blood in the left ventricle. Impact of age-related changes in filling flow. submitted, 2018.Google Scholar
  3. 3.
    Bermejo, J., Y. Benito, M. Alhama, R. Yotti, P. Martinez-Legazpi, C. P. Del Villar, E. Perez-David, A. Gonzalez-Mansilla, C. Santa-Marta, A. Barrio, F. Fernandez-Aviles, and J. C. Del Alamo. Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 306:H718–H729, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bluestein, D., K. B. Chandran, K. B. Manning, D. B. Luestein, K. B. C. Handran, and K. B. M. Anning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38(3):1236–1256, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bryan, A. J., C. A. Rogers, K. Bayliss, J. Wild, and G. D. Angelini. Prospective randomized comparison of CarboMedics and St. Jude Medical bileaflet mechanical heart valve prostheses: ten-year follow-up. J. Thorac. Cardiovasc. Surg. 133:614–622, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Carlhall, C. J., and A. Bolger. Advances in heart failure passing strange flow in the failing ventricle. Circ. Heart Fail. 3:326–331, 2010.CrossRefPubMedGoogle Scholar
  7. 7.
    Coleman, H. W., and W. G. Steele. Experimentation, Validation, and Uncertainty Analysis for Engineers. Hoboken: Wiley, 2018.CrossRefGoogle Scholar
  8. 8.
    de Campos, N. L. K. L. Comparison of the occurrence of thromboembolic and bleeding complications in patients with mechanical heart valve prosthesis with one and two leaflets in the mitral position. Rev. Bras. Cir. Cardiovasc. 29:59–68, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Di Labbio, G., and L. Kadem. Jet collisions and vortex reversal in the human left ventricle. J. Biomech. 78:155–160, 2018.CrossRefPubMedGoogle Scholar
  10. 10.
    Eckert, C. E., B. Zubiate, M. Vergnat, J. H. III Gorman, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Emery, R. W., C. C. Krogh, S. McAdams, A. M. Emery, and A. R. Holter. Long-term follow up of patients undergoing reoperative surgery with aortic or mitral valve replacement using a St. Jude medical prosthesis. J. Heart Valve Dis. 19:473–484, 2010.PubMedGoogle Scholar
  12. 12.
    Eriksson, J., C. J. Carlhäll, P. Dyverfeldt, J. Engvall, A. F. Bolger, and T. Ebbers. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12:9, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Faludi, R., M. Szulik, J. D’hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, and J.-U. Voigt. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139:1501–1510, 2010.CrossRefPubMedGoogle Scholar
  14. 14.
    Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134(8):081002, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Hellums, J. D. 1993 Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.CrossRefPubMedGoogle Scholar
  16. 16.
    Hendabadi, S., J. Bermejo, Y. Benito, R. Yotti, F. Fernandez-Aviles, J. C. del Alamo, and S. C. Shadden. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann. Biomed. Eng. 41:2603–2616, 2013.CrossRefPubMedGoogle Scholar
  17. 17.
    Hong, G.-R., G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J. K. Kim, A. Baweja, S. Liu, N. Chung, H. Houle, J. Narula, and M. A. Vannan. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC. Cardiovasc. Imaging 1:705–717, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.CrossRefPubMedGoogle Scholar
  19. 19.
    Le Tourneau, T., V. Lim, J. Inamo, F. A. Miller, D. W. Mahoney, H. V. Schaff, and M. Enriquez-Sarano. Achieved anticoagulation vs prosthesis selection for mitral mechanical valve replacement: A population-based outcome study. Chest 136:1503–1513, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Mächler, H., M. Perthel, G. Reiter, U. Reiter, M. Zink, P. Bergmann, A. Waltensdorfer, and J. Laas. Influence of bileaflet prosthetic mitral valve orientation on left ventricular flow–an experimental in vivo magnetic resonance imaging study. Eur. J. Cardiothorac. Surg. 26:747–753, 2004.CrossRefPubMedGoogle Scholar
  21. 21.
    Martinez-Legazpi, P., J. Bermejo, Y. Benito, R. Yotti, C. Perez Del Villar, A. Gonzalez-Mansilla, A. Barrio, E. Villacorta, P. L. Sanchez, F. Fernandez-Aviles, and J. C. del Alamo. Contribution of the diastolic vortex ring to left ventricular filling. J. Am. Coll. Cardiol. 64:1711–1721, 2014.CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez-Legazpi, P., L. Rossini, C. Perez Del Villar, Y. Benito, C. Devesa-Cordero, R. Yotti, A. Delgado-Montero, A. Gonzalez-Mansilla, A. M. Kahn, F. Fernandez-Aviles, J. C. Del Alamo, and J. Bermejo. Stasis mapping using ultrasound: A prospective study in acute myocardial infarction. JACC. Cardiovasc. Imaging 11(3):514–515, 2018.CrossRefPubMedGoogle Scholar
  23. 23.
    Maurer, M. M., D. Burkhoff, S. Maybaum, V. Franco, T. J. Vittorio, P. Williams, L. White, G. Kamalakkannan, J. Myers, and D. M. Mancini. A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J. Card. Fail. 15:689–699, 2009.CrossRefPubMedGoogle Scholar
  24. 24.
    Meschini, V., M. D. De Tullio, G. Querzoli, and R. Verzicco. Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J. Fluid Mech. 2018. Scholar
  25. 25.
    Murray, C. D., and S. F. Dermott. Solar System Dynamics. Cambridge: Cambridge University Press, p. 17, 1999.Google Scholar
  26. 26.
    Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95(108101):1–4, 2005.Google Scholar
  27. 27.
    Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010.CrossRefPubMedGoogle Scholar
  28. 28.
    Pierrakos, O. Vortex Dynamics and Energetics in Left Ventricular Flows. PhD diss., Virginia Tech and Wake Forest Univeristy, 2006.Google Scholar
  29. 29.
    Prasongsukarn, K., W. R. E. Jamieson, and S. V. Lichtenstein. Performance of bioprosthesis and mechanical prostheses in age group 61–70 years. J. Heart Valve Dis. 14:501–8–510–1, 2005; (discussion 509).Google Scholar
  30. 30.
    Querzoli, G., S. Fortini, and A. Cenedese. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids 22:1–10, 2010.CrossRefGoogle Scholar
  31. 31.
    Raghav, V., S. Sastry, and N. Saikrishnan. Experimental assessment of flow fields associated with heart valve prostheses using particle image velocimetry (PIV): Recommendations for best practices. Cardiovasc. Eng. Technol. 9:273–287, 2018.CrossRefPubMedGoogle Scholar
  32. 32.
    Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12(2):113–125, 1979.CrossRefPubMedGoogle Scholar
  33. 33.
    Ribeiro, A. H., O. C. Wender, A. S. de Almeida, L. E. Soares, and P. D. Picon. Comparison of clinical outcomes in patients undergoing mitral valve replacement with mechanical or biological substitutes: a 20 years cohort. BMC Cardiovasc. Disord. 14:146, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rossini, L., P. Martinez-Legazpi, Y. Benito, C. Pérez del Villar, A. Gonzalez-Mansilla, A. Barrio, M.-G. Borja, R. Yotti, A. M. Kahn, S. C. Shadden, F. Fernández-Avilés, J. Bermejo, and J. C. del Álamo. Clinical assessment of intraventricular blood transport in patients undergoing cardiac resynchronization therapy. Meccanica 52:563–576, 2017.CrossRefPubMedGoogle Scholar
  35. 35.
    Rossini, L., P. Martinez-Legazpi, V. Vu, L. Fernández-Friera, C. Pérez del Villar, S. Rodríguez-López, Y. Benito, M.-G. Borja, D. Pastor-Escuredo, R. Yotti, M. J. Ledesma-Carbayo, A. M. Kahn, B. Ibáñez, F. Fernández-Avilés, K. May-Newman, J. Bermejo, and J. C. del Álamo. A clinical method for mapping and quantifying blood stasis in the left ventricle. J. Biomech. 49:2152–2161, 2016.CrossRefPubMedGoogle Scholar
  36. 36.
    Sotiropoulos, F., T. B. Le, and A. Gilmanov. Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48:259–283, 2016.CrossRefGoogle Scholar
  37. 37.
    Westerdale, J. C., R. Adrian, K. Squires, H. Chaliki, and M. Belohlavek. Effects of bileaflet mechanical mitral valve rotational orientation on left ventricular flow conditions. Open Cardiovasc. Med. J. 9:62–68, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wong, K., G. Samaroo, I. Ling, W. Dembitsky, R. Adamson, J. C. del Álamo, K. May-Newman, J. C. del Alamo, and K. May-Newman. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J. Biomech. 47:1485–1494, 2014.CrossRefPubMedGoogle Scholar
  39. 39.
    Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: A study in two bileaflet MHV designs. J. Biomech. 43:2400–2409, 2010.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zamarripa, G. M., L. A. Enriquez, W. Dembitsky, and K. May-Newman. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO J. 54:237–244, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Vi Vu
    • 1
  • Lorenzo Rossini
    • 2
  • Ricardo Montes
    • 1
  • Josue Campos
    • 1
  • Juyeun Moon
    • 1
  • Pablo Martinez-Legazpi
    • 3
  • Javier Bermejo
    • 3
  • Juan C. del Álamo
    • 2
  • Karen May-Newman
    • 1
    Email author
  1. 1.Bioengineering ProgramSan Diego State UniversitySan DiegoUSA
  2. 2.Mechanical and Aerospace Engineering DepartmentUniversity of California San DiegoLa JollaUSA
  3. 3.Department of Cardiology, Hospital General Universitario Gregorio MarañónFacultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBERCV, Instituto de Salud Carlos IIIMadridSpain

Personalised recommendations