Selection Procedures for the Largest Lyapunov Exponent in Gait Biomechanics
- 44 Downloads
Abstract
The present study was aimed at investigating the effectiveness of the Wolf et al. (LyE_W) and Rosenstein et al. largest Lyapunov Exponent (LyE_R) algorithms to differentiate data sets with distinctly different temporal structures. The three-dimensional displacement of the sacrum was recorded from healthy subjects during walking and running at two speeds; one low speed close to the preferred walking speed and one high speed close to the preferred running speed. LyE_R and LyE_W were calculated using four different time series normalization procedures. The performance of the algorithms were evaluated based on their ability to return relative low values for slow walking and fast running and relative high values for fast walking and slow running. Neither of the two algorithms outperformed the other; however, the effectiveness of the two algorithms was highly dependent on the applied time series normalization procedure. Future studies using the LyE_R should normalize the time series to a fixed number of strides and a fixed number of data points per stride or data points per time series while the LyE_W should be applied to time series normalized to a fixed number of data points or a fixed number of strides.
Keywords
Locomotion Dynamics Walking Variability Nonlinear analysisNotes
Acknowledgments
This work was supported by the Center for Research in Human Movement Variability and the National Institutes of Health (P20GM109090 and R15HD08682).
Supplementary material
References
- 1.Alkjaer, T., P. C. Raffalt, H. Dalsgaard, E. B. Simonsen, N. C. Petersen, H. Bliddal, and M. Henriksen. Gait variability and motor control in people with knee osteoarthritis. Gait Posture 42:479–484, 2015.CrossRefGoogle Scholar
- 2.Bruijn, S. M., O. G. Meijer, P. J. Beek, and J. H. van Dieen. Assessing the stability of human locomotion: a review of current measures. J. R. Soc. Interface 10:20120999, 2013.CrossRefGoogle Scholar
- 3.Bruijn, S. M., O. G. Meijer, S. M. Rispens, A. Daffertshofer, and J. H. van Dieen. Letter to the editor: “Sensitivity of the Wolf’s and Rosenstein’s algorithms to evaluate local dynamic stability from small gait data sets”. Ann. Biomed. Eng. 40:2505–2506, 2012; (author reply 2507-2509).CrossRefGoogle Scholar
- 4.Bruijn, S. M., J. H. van Dieen, O. G. Meijer, and P. J. Beek. Is slow walking more stable? J. Biomech. 42:1506–1512, 2009.CrossRefGoogle Scholar
- 5.Buzzi, U. H., N. Stergiou, M. J. Kurz, P. A. Hageman, and J. Heidel. Nonlinear dynamics indicates aging affects variability during gait. Clin. Biomech. 18:435–443, 2003.CrossRefGoogle Scholar
- 6.Cignetti, F., L. M. Decker, and N. Stergiou. Sensitivity of the Wolf’s and Rosenstein’s algorithms to evaluate local dynamic stability from small gait data sets. Ann. Biomed. Eng. 40:1122–1130, 2012.CrossRefGoogle Scholar
- 7.Cignetti, F., L. M. Decker, N. Stergiou, et al. Sensitivity of the Wolf’s and Rosenstein’s algorithms to evaluate local dynamic stability from small gait data sets: response to commentaries by Bruijn. Ann. Biomed. Eng. 40:2507–2509, 2012.CrossRefGoogle Scholar
- 8.Cohen, J. Statistical Power Analysis for the Behavioural Sciences. Hillsdale, NJ: Lawrence Erlbaum, 1988.Google Scholar
- 9.Diedrich, F. J., and W. H. Warren, Jr. Why change gaits? Dynamics of the walk-run transition. J. Exp. Psychol. Hum. Percept. Perform. 21:183–202, 1995.CrossRefGoogle Scholar
- 10.Diedrich, F. J., and W. H. Warren. The dynamics of gait transitions: effects of grade and load. J. Mot. Behav. 30:60–78, 1998.CrossRefGoogle Scholar
- 11.Dingwell, J. B., and J. P. Cusumano. Nonlinear time series analysis of normal and pathological human walking. Chaos 10:848–863, 2000.CrossRefGoogle Scholar
- 12.Dingwell, J. B., J. P. Cusumano, P. R. Cavanagh, and D. Sternad. Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123:27–32, 2001.CrossRefGoogle Scholar
- 13.Dingwell, J. B., and L. C. Marin. Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39:444–452, 2006.CrossRefGoogle Scholar
- 14.England, S. A., and K. P. Granata. The influence of gait speed on local dynamic stability of walking. Gait Posture 25:172–178, 2007.CrossRefGoogle Scholar
- 15.Hattie, J., and R. W. Cooksey. Procedures for assessing the validities of tests using the “Known-Groups” method. Appl. Psychol. Meas. 8:295–305, 1984.CrossRefGoogle Scholar
- 16.Hausdorff, J. M., S. L. Mitchell, R. Firtion, C. K. Peng, M. E. Cudkowicz, J. Y. Wei, and A. L. Goldberger. Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington’s disease. J. Appl. Physiol. 82(262–269):1997, 1985.Google Scholar
- 17.Ihlen, E. A. F., K. S. van Schooten, S. M. Bruijn, M. Pijnappels, and J. H. van Dieen. Fractional stability of trunk acceleration dynamics of daily-life walking: toward a unified concept of gait stability. Front. Physiol. 8:516, 2017.CrossRefGoogle Scholar
- 18.Jordan, K., J. H. Challis, J. P. Cusumano, and K. M. Newell. Stability and the time-dependent structure of gait variability in walking and running. Hum. Mov. Sci. 28:113–128, 2009.CrossRefGoogle Scholar
- 19.Myers, S. A., J. M. Johanning, N. Stergiou, R. I. Celis, L. Robinson, and Pipinos, II. Gait variability is altered in patients with peripheral arterial disease. J. Vasc. Surg. 49:924-931.e921, 2009.Google Scholar
- 20.Myers, S. A., Pipinos, II, J. M. Johanning, and N. Stergiou. Gait variability of patients with intermittent claudication is similar before and after the onset of claudication pain. Clin. Biomech. 26:729–734, 2011.CrossRefGoogle Scholar
- 21.Raffalt, P. C., M. K. Guul, A. N. Nielsen, S. Puthusserypady, and T. Alkjaer. Economy, movement dynamics, and muscle activity of human walking at different speeds. Sci. Rep. 7:43986, 2017.CrossRefGoogle Scholar
- 22.Rosenstein, M. T., J. J. Collins, and C. J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D 65:117–134, 1993.CrossRefGoogle Scholar
- 23.Sauer, T., and J. A. Yorke. How many delay coordinates do you need? Int. J. Bifurc. Chaos 3:737–744, 1993.CrossRefGoogle Scholar
- 24.Sauer, T., J. A. Yorke, and M. Casdagli. Embedology. J. Stat. Phys. 65:579–616, 1991.CrossRefGoogle Scholar
- 25.Scafetta, N., D. Marchi, and B. J. West. Understanding the complexity of human gait dynamics. Chaos 19:026108, 2009.CrossRefGoogle Scholar
- 26.Stenum, J., S. M. Bruijn, and B. R. Jensen. The effect of walking speed on local dynamic stability is sensitive to calculation methods. J. Biomech. 47:3776–3779, 2014.CrossRefGoogle Scholar
- 27.Stergiou, N. Innovative Analyses of Human Movement. Champaign, Illinois: Human Kinetics, 2004.Google Scholar
- 28.Stergiou, N. Nonlinear Analysis for Human Movement Variability. Boca Raton, Florida: Taylor & Francis Group, 2016.CrossRefGoogle Scholar
- 29.Takens, F. Detecting strange attractors in turbulence. Dyn. Syst. Turbul. Lect. Notes Math. 898:366–381, 1981.CrossRefGoogle Scholar
- 30.Terrier, P., and O. Deriaz. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J. Neuroeng. Rehabil. 8:12, 2011.CrossRefGoogle Scholar
- 31.Terrier, P., and O. Deriaz. Non-linear dynamics of human locomotion: effects of rhythmic auditory cueing on local dynamic stability. Front. Physiol. 4:230, 2013.CrossRefGoogle Scholar
- 32.Terrier, P., V. Turner, and Y. Schutz. GPS analysis of human locomotion: further evidence for long-range correlations in stride-to-stride fluctuations of gait parameters. Hum. Mov. Sci. 24:97–115, 2005.CrossRefGoogle Scholar
- 33.van Schooten, K. S., S. M. Rispens, M. Pijnappels, A. Daffertshofer, and J. H. van Dieen. Assessing gait stability: the influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. J. Biomech. 46:137–141, 2013.CrossRefGoogle Scholar
- 34.Wolf, A., J. B. Swift, H. L. Swinney, and J. A. Vastano. Determining lyapunov exponents from a time-series. Physica D 16:285–317, 1985.CrossRefGoogle Scholar
- 35.Wurdeman, S. R. State-space reconstruction. In: Nonlinear Analysis for Human Movement Variability, edited by N. Stergiou. Boca Raton, Florida: Taylor & Francis Group, 2016.Google Scholar
- 36.Wurdeman, S. R., S. A. Myers, A. L. Jacobsen, and N. Stergiou. Prosthesis preference is related to stride-to-stride fluctuations at the prosthetic ankle. J. Rehabil. Res. Dev. 50:671–686, 2013.CrossRefGoogle Scholar
- 37.Wurdeman, S. R., S. A. Myers, and N. Stergiou. Transtibial amputee joint motion has increased attractor divergence during walking compared to non-amputee gait. Ann. Biomed. Eng. 41:806–813, 2013.CrossRefGoogle Scholar
- 38.Wurdeman, S. R., S. A. Myers, and N. Stergiou. Amputation effects on the underlying complexity within transtibial amputee ankle motion. Chaos 24:013140, 2014.CrossRefGoogle Scholar
- 39.Zampeli, F., C. O. Moraiti, S. Xergia, V. A. Tsiaras, N. Stergiou, and A. D. Georgoulis. Stride-to-stride variability is altered during backward walking in anterior cruciate ligament deficient patients. Clin. Biomech. 25:1037–1041, 2010.CrossRefGoogle Scholar