Advertisement

Fibroblast Growth Factor-2 Binding to Heparan Sulfate Proteoglycans Varies with Shear Stress in Flow-Adapted Cells

  • Jonathan Garcia
  • Nisha Patel
  • Sarah Basehore
  • Alisa Morss ClyneEmail author
Article

Abstract

Fibroblast growth factor 2 (FGF2), an important regulator of angiogenesis, binds to endothelial cell (EC) surface FGF receptors (FGFRs) and heparan sulfate proteoglycans (HSPGs). FGF2 binding kinetics have been predominantly studied in static culture; however, the endothelium is constantly exposed to flow which may affect FGF2 binding. We therefore used experimental and computational techniques to study how EC FGF2 binding changes in flow. ECs adapted to 24 h of flow demonstrated biphasic FGF2-HSPG binding, with FGF2-HSPG complexes increasing up to 20 dynes/cm2 shear stress and then decreasing at higher shear stresses. To understand how adaptive EC surface remodeling in response to shear stress may affect FGF2 binding to FGFR and HSPG, we implemented a computational model to predict the relative effects of flow-induced surface receptor changes. We then fit the computational model to the experimental data using relationships between HSPG availability and FGF2-HSPG dissociation and flow that were developed from a basement membrane study, as well as including HSPG production. These studies suggest that FGF2 binding kinetics are altered in flow-adapted ECs due to changes in cell surface receptor quantity, availability, and binding kinetics, which may affect cell growth factor response.

Keywords

Fibroblast growth factor-2 Endothelial cells Shear stress Fluid flow Binding kinetics Heparan sulfate proteoglycans Mass transport 

Abbreviations

FGF2

Fibroblast growth factor 2, basic fibroblast growth factor

HSPG

Heparan sulfate proteoglycan

FGFR

Fibroblast growth factor receptor

EC

Endothelial cell

Notes

Acknowledgments

Funding was provided by the National Science Foundation Division of Chemical, Bioengineering, Environmental, and Transport Systems (Grant No. CBET-0846751).

References

  1. 1.
    Bacabac, R. G., T. H. Smit, S. C. Cowin, et al. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 38:159–167, 2005.CrossRefGoogle Scholar
  2. 2.
    Bai, X., K. J. Bame, H. Habuchi, K. Kimata, and J. D. Esko. Turnover of heparan sulfate depends on 2-O-sulfation of uronic acids. J. Biol. Chem. 272:23172–23179, 1997.CrossRefGoogle Scholar
  3. 3.
    Barkefors, I. , C. K. Aidun, and E. Ulrika Egertsdotter. Effect of fluid shear stress on endocytosis of heparan sulfate and low-density lipoproteins. J. Biomed. Biotechnol. 2008.  https://doi.org/10.1155/2007/65136.Google Scholar
  4. 4.
    Bell, G. I. Models for the specific adhesion of cells to cells. Science 200:618–627, 1978.CrossRefGoogle Scholar
  5. 5.
    Bikfalvi, A., S. Klein, G. Pintucci, and D. B. Rifkin. Biological roles of fibroblast growth factor-2. Endocr. Rev. 18:26–45, 1997.Google Scholar
  6. 6.
    Christianson, H. C., and M. Belting. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 35:51–55, 2014.CrossRefGoogle Scholar
  7. 7.
    Chua, C. C., N. Rahimi, K. Forsten-Williams, and M. A. Nugent. Heparan sulfate proteoglycans function as receptors for fibroblast growth factor-2 activation of extracellular signal-regulated kinases 1 and 2. Circ. Res. 94:316–323, 2004.CrossRefGoogle Scholar
  8. 8.
    Clyne, A. M., and E. R. Edelman. Vascular growth factor binding kinetics to the endothelial cell basement membrane, with a kinetics-based correction for substrate binding. Cytotechnology 60:33, 2009.CrossRefGoogle Scholar
  9. 9.
    Colgan, O. C., G. Ferguson, N. T. Collins, et al. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am. J. Physiol. Heart Circ. Physiol. 292:H3190–H3197, 2007.CrossRefGoogle Scholar
  10. 10.
    Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems. New York: Cambridge University Press, 2009.CrossRefGoogle Scholar
  11. 11.
    Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.CrossRefGoogle Scholar
  12. 12.
    Davies, P. F., C. F. Dewey, Jr., S. R. Bussolari, E. J. Gordon, and M. A. Gimbrone, Jr. Influence of hemodynamic forces on vascular endothelial function. In vitro studies of shear stress and pinocytosis in bovine aortic cells. J. Clin. Investig. 73:1121–1129, 1984.CrossRefGoogle Scholar
  13. 13.
    DeMaio, L., Y. S. Chang, T. W. Gardner, J. M. Tarbell, and D. A. Antonetti. Shear stress regulates occludin content and phosphorylation. Am. J. Physiol. Heart Circ. Physiol. 281:H105–H113, 2001.CrossRefGoogle Scholar
  14. 14.
    DePaola, N., J. E. Phelps, L. Florez, et al. Electrical impedance of cultured endothelium under fluid flow. Ann. Biomed. Eng. 29:648–656, 2001.CrossRefGoogle Scholar
  15. 15.
    Dowd, C. J., C. L. Cooney, and M. A. Nugent. Heparan sulfate mediates bFGF transport through basement membrane by diffusion with rapid reversible binding. J. Biol. Chem. 274:5236–5244, 1999.CrossRefGoogle Scholar
  16. 16.
    Dupree, M. A., S. R. Pollack, E. M. Levine, and C. T. Laurencin. Fibroblast growth factor 2 induced proliferation in osteoblasts and bone marrow stromal cells: a whole cell model. Biophys. J. 91:3097–3112, 2006.CrossRefGoogle Scholar
  17. 17.
    East, M. A., D. I. Landis, M. A. Thompson, and B. H. Annex. Effect of single dose of intravenous heparin on plasma levels of angiogenic growth factors. Am. J. Cardiol. 91:1234–1236, 2003.CrossRefGoogle Scholar
  18. 18.
    Egeberg, M., R. Kjeken, S. O. Kolset, T. Berg, and K. Prydz. Internalization and stepwise degradation of heparan sulfate proteoglycans in rat hepatocytes. Biochim. Biophys. Acta 1541:135–149, 2001.CrossRefGoogle Scholar
  19. 19.
    Fannon, M., K. Forsten-Williams, C. J. Dowd, D. A. Freedman, J. Folkman, and M. A. Nugent. Binding inhibition of angiogenic factors by heparan sulfate proteoglycans in aqueous humor: potential mechanism for maintenance of an avascular environment. FASEB J. 17:902–904, 2003.CrossRefGoogle Scholar
  20. 20.
    Ferrans, V. J., J. Milei, Y. Tomita, and R. A. Storino. Basement membrane thickening in cardiac myocytes and capillaries in chronic Chagas’ disease. Am. J. Cardiol. 61:1137–1140, 1988.CrossRefGoogle Scholar
  21. 21.
    Figueroa, D. S., S. F. Kemeny, and A. M. Clyne. Glycated collagen impairs endothelial cell response to cyclic stretch. Cell. Mol. Bioeng. 4:220–230, 2011.CrossRefGoogle Scholar
  22. 22.
    Filion, R. J., and A. S. Popel. A reaction–diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed. Eng. 32:645–663, 2004.CrossRefGoogle Scholar
  23. 23.
    Filion, R. J., and A. S. Popel. Intracoronary administration of FGF-2: a computational model of myocardial deposition and retention. Am. J. Physiol. Heart Circ. Physiol. 288:H263–H279, 2005.CrossRefGoogle Scholar
  24. 24.
    Forsten, K. E., M. Fannon, and M. A. Nugent. Potential mechanisms for the regulation of growth factor binding by heparin. J. Theor. Biol. 205:215–230, 2000.CrossRefGoogle Scholar
  25. 25.
    Fuki, I. V., M. E. Meyer, and K. J. Williams. Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Biochem. J. 351(Pt 3):607–612, 2000.CrossRefGoogle Scholar
  26. 26.
    Giantsos-Adams, K. M., A. J. Koo, S. Song, et al. Heparan sulfate regrowth profiles under laminar shear flow following enzymatic degradation. Cell. Mol. Bioeng. 6:160–174, 2013.CrossRefGoogle Scholar
  27. 27.
    Han, Y., S. Weinbaum, J. A. Spaan, and H. Vink. Large-deformation analysis of the elastic recoil of fibre layers in a Brinkman medium with application to the endothelial glycocalyx. J. Fluid Mech. 554:217–235, 2006.CrossRefGoogle Scholar
  28. 28.
    Huxley, V. H., and D. A. Williams. Role of a glycocalyx on coronary arteriole permeability to proteins: evidence from enzyme treatments. Am. J. Physiol. Heart Circ. Physiol. 278:H1177–H1185, 2000.CrossRefGoogle Scholar
  29. 29.
    Jo, H., R. O. Dull, T. M. Hollis, and J. M. Tarbell. Endothelial albumin permeability is shear dependent, time dependent, and reversible. Am. J. Physiol. 260:H1992–H1996, 1991.Google Scholar
  30. 30.
    Kang, H., L. M. Cancel, and J. M. Tarbell. Effect of shear stress on water and LDL transport through cultured endothelial cell monolayers. Atherosclerosis 233:682–690, 2014.CrossRefGoogle Scholar
  31. 31.
    Khan, A. G., A. Pickl-Herk, L. Gajdzik, T. C. Marlovits, R. Fuchs, and D. Blaas. Entry of a heparan sulphate-binding HRV8 variant strictly depends on dynamin but not on clathrin, caveolin, and flotillin. Virology 412:55–67, 2011.CrossRefGoogle Scholar
  32. 32.
    Laham, R. J., F. W. Sellke, E. R. Edelman, et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebo-controlled trial. Circulation 100:1865–1871, 1999.CrossRefGoogle Scholar
  33. 33.
    Li, J., N. W. Shworak, and M. Simons. Increased responsiveness of hypoxic endothelial cells to FGF2 is mediated by HIF-1alpha-dependent regulation of enzymes involved in synthesis of heparan sulfate FGF2-binding sites. J. Cell Sci. 115:1951–1959, 2002.Google Scholar
  34. 34.
    Liliensiek, S. J., P. Nealey, and C. J. Murphy. Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering. Tissue Eng. A 15:2643–2651, 2009.CrossRefGoogle Scholar
  35. 35.
    Lin, X., E. M. Buff, N. Perrimon, and A. M. Michelson. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126:3715–3723, 1999.Google Scholar
  36. 36.
    Liu, J. X., Z. P. Yan, Y. Y. Zhang, J. Wu, X. H. Liu, and Y. Zeng. Hemodynamic shear stress regulates the transcriptional expression of heparan sulfate proteoglycans in human umbilical vein endothelial cell. Cell. Mol. Biol. (Noisy-le-grand) 62:28–34, 2016.Google Scholar
  37. 37.
    Montesano, R., J.-D. Vassalli, A. Baird, R. Guillemin, and L. Orci. Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl Acad. Sci. USA 83:7297–7301, 1986.CrossRefGoogle Scholar
  38. 38.
    Morss, A. S., and E. R. Edelman. Glucose modulates basement membrane fibroblast growth factor-2 via alterations in endothelial cell permeability. J. Biol. Chem. 282:14635–14644, 2007.CrossRefGoogle Scholar
  39. 39.
    Moscatelli, D. High and low affinity binding sites for basic fibroblast growth factor on cultured cells: absence of a role for low affinity binding in the stimulation of plasminogen activator production by bovine capillary endothelial cells. J. Cell. Physiol. 131:123–130, 1987.CrossRefGoogle Scholar
  40. 40.
    Mulivor, A. W., and H. H. Lipowsky. Inflammation- and ischemia-induced shedding of venular glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 286:H1672–H1680, 2004.CrossRefGoogle Scholar
  41. 41.
    Neufeld, G., and D. Gospodarowicz. The identification and partial characterization of the fibroblast growth factor receptor of baby hamster kidney cells. J. Biol. Chem. 260:13860–13868, 1985.Google Scholar
  42. 42.
    Noria, S., D. B. Cowan, A. I. Gotlieb, and B. L. Langille. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ. Res. 85:504–514, 1999.CrossRefGoogle Scholar
  43. 43.
    Nugent, M. A., and E. R. Edelman. Kinetics of basic fibroblast growth factor binding to its receptor and heparan sulfate proteoglycan: a mechanism for cooperactivity. Biochemistry 31:8876–8883, 1992.CrossRefGoogle Scholar
  44. 44.
    Nugent, M. A., and R. V. Iozzo. Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32:115–120, 2000.CrossRefGoogle Scholar
  45. 45.
    Patel, N. S., K. V. Reisig, and A. M. Clyne. A computational model of fibroblast growth factor-2 binding to endothelial cells under fluid flow. Ann. Biomed. Eng. 41:154–171, 2013.CrossRefGoogle Scholar
  46. 46.
    Pries, A., T. Secomb, and P. Gaehtgens. The endothelial surface layer. Pflüg. Arch. 440:653–666, 2000.CrossRefGoogle Scholar
  47. 47.
    Quere, M. A., C. Clergeau, and N. Fontenaille. The paralytic dyssynergies—the squint dyssynergies, and Cuppers’ syndrome (author’s transl). Klin. Mon. Augenheilkd. 167:162–178, 1975.Google Scholar
  48. 48.
    Reisig, K., and A. M. Clyne. Fibroblast growth factor-2 binding to the endothelial basement membrane peaks at a physiologically relevant shear stress. Matrix Biol. 29:586–593, 2010.CrossRefGoogle Scholar
  49. 49.
    Safran, M., M. Eisenstein, D. Aviezer, and A. Yayon. Oligomerization reduces heparin affinity but enhances receptor binding of fibroblast growth factor 2. Biochem. J. 345:107–113, 2000.CrossRefGoogle Scholar
  50. 50.
    Seebach, J., G. Donnert, R. Kronstein, et al. Regulation of endothelial barrier function during flow-induced conversion to an arterial phenotype. Cardiovasc. Res. 75:596–607, 2007.CrossRefGoogle Scholar
  51. 51.
    Sevim, S., S. Ozer, G. Jones, et al. Nanomechanics on FGF-2 and heparin reveal slip bond characteristics with pH dependency. ACS Biomater. Sci. Eng. 3:1000–1007, 2017.CrossRefGoogle Scholar
  52. 52.
    Sherwood, L. Human Physiology: From Cells to Systems (7th ed.). Boston: Cengage Learning, 2010.Google Scholar
  53. 53.
    Sill, H. W., Y. S. Chang, J. R. Artman, J. A. Frangos, T. M. Hollis, and J. M. Tarbell. Shear stress increases hydraulic conductivity of cultured endothelial monolayers. Am. J. Physiol. 268:H535–H543, 1995.CrossRefGoogle Scholar
  54. 54.
    Silver, M. D., V. F. Huckell, and M. Lorber. Basement membranes of small cardiac vessels in patients with diabetes and myxoedema: preliminary observations. Pathology 9:213–220, 1977.CrossRefGoogle Scholar
  55. 55.
    Sperinde, G. V., and M. A. Nugent. Heparan sulfate proteoglycans control intracellular processing of bFGF in vascular smooth muscle cells. Biochemistry 37:13153–13164, 1998.CrossRefGoogle Scholar
  56. 56.
    Sperinde, G. V., and M. A. Nugent. Mechanisms of fibroblast growth factor 2 intracellular processing: a kinetic analysis of the role of heparan sulfate proteoglycans. Biochemistry 39:3788–3796, 2000.CrossRefGoogle Scholar
  57. 57.
    Sprague, E. A., B. L. Steinbach, R. M. Nerem, and C. J. Schwartz. Influence of a laminar steady-state fluid-imposed wall shear stress on the binding, internalization, and degradation of low-density lipoproteins by cultured arterial endothelium. Circulation 76:648–656, 1987.CrossRefGoogle Scholar
  58. 58.
    Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–330, 2010.CrossRefGoogle Scholar
  59. 59.
    Venkataraman, G., Z. Shriver, J. C. Davis, and R. Sasisekharan. Fibroblast growth factors 1 and 2 are distinct in oligomerization in the presence of heparin-like glycosaminoglycans. Proc. Natl Acad. Sci. USA 96:1892–1897, 1999.CrossRefGoogle Scholar
  60. 60.
    Vlodavsky, I., J. Folkman, R. Sullivan, et al. Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix. Proc. Natl Acad. Sci. USA 84:2292–2296, 1987.CrossRefGoogle Scholar
  61. 61.
    Yanagishita, M., and V. C. Hascall. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J. Biol. Chem. 259:10270–10283, 1984.Google Scholar
  62. 62.
    Yao, Y. Three-dimensional flow-induced dynamics of the endothelial surface glycocalyx layer. Massachusetts Institute of Technology, 2007.Google Scholar
  63. 63.
    Yayon, A., M. Klagsbrun, J. D. Esko, P. Leder, and D. M. Ornitz. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64:841–848, 1991.CrossRefGoogle Scholar
  64. 64.
    Zhang, Z., C. Coomans, and G. David. Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the “cooperative end structures” model. J. Biol. Chem. 276:41921–41929, 2001.CrossRefGoogle Scholar
  65. 65.
    Zhao, B., C. Zhang, K. Forsten-Williams, J. Zhang, and M. Fannon. Endothelial cell capture of heparin-binding growth factors under flow. PLoS Comput. Biol. 6:e1000971, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Jonathan Garcia
    • 1
  • Nisha Patel
    • 1
  • Sarah Basehore
    • 1
  • Alisa Morss Clyne
    • 2
    Email author
  1. 1.School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaUSA
  2. 2.Mechanical Engineering and Mechanics DepartmentDrexel UniversityPhiladelphiaUSA

Personalised recommendations