Automated Gait Analysis Detects Improvements after Intracellular σ Peptide Administration in a Rat Hemisection Model of Spinal Cord Injury

  • Trevor R. Ham
  • Mahmoud Farrag
  • Andrew M. Soltisz
  • Emily H. Lakes
  • Kyle D. Allen
  • Nic D. LeipzigEmail author


A promising treatment strategy for spinal cord injury (SCI) is to reduce inhibition from chondroitin sulfate proteoglycans (CSPGs). For example, administering intracellular σ peptide (ISP) can improve the ability of axons to cross inhibitory CSPGs and improve function in rodent models of SCI. To translate such treatments into the clinic, we need robust and sensitive methods for studying rodent models. In this study, we applied a newly developed suite of quantitative gait analysis tools: gait analysis instrumentation and technology optimized for rodents (GAITOR), which consists of an arena and open-source software (AGATHA: automated gait analysis through hues and areas). We showed that GAITOR can be used to detect subtle functional improvements (measured by hindlimb duty factor imbalance) in rats following ISP administration in a T10 hemisection injury model. We demonstrated that SCI-specific parameters (right paw placement accuracy and phase dispersion) can be easily added to GAITOR to track recovery. We confirmed the gait observations via retrograde tracer uptake. We concluded that GAITOR is a powerful tool for measuring recovery after moderate/mild SCI, and could be used to replace expensive/inflexible commercially-available gait analysis techniques.


Spinal cord injury Gait analysis Hemisection Intracellular sigma peptide Behavioral analysis 



The authors thank Dr. Hossein Tavana (UA) for the use of his Leica Cryostat and the faculty/staff at the Ohio State University Spinal Cord Injury Training Program (sponsored by the Craig H. Neilsen Foundation) for their valuable input and advice. This work was supported by the National Institute of Neurological Disorders and Stroke (Grant 1R21NS096571-01).

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

Supplementary material

10439_2019_2198_MOESM1_ESM.pdf (22.8 mb)
Supplementary material 1 (DOC 23,366 kb)


  1. 1.
    Basso, D. M., M. S. Beattie, and J. C. Bresnahan. A sensitive and reliable locomotor rating scale for open field testing in rats. J. Neurotrauma. 12:1–21, 1995.CrossRefGoogle Scholar
  2. 2.
    Burda, J. E. and M. V. Sofroniew. Reactive gliosis and the multicellular response to cns damage and disease. Neuron 81:229–48, 2014.CrossRefGoogle Scholar
  3. 3.
    Ham, T. R. and N. D. Leipzig. Biomaterial strategies for limiting the impact of secondary events following spinal cord injury. Biomed. Mater. 13:024105, 2018.CrossRefGoogle Scholar
  4. 4.
    Jacobs, B. Y., H. E. Kloefkorn, and K. D. Allen. Gait analysis methods for rodent models of osteoarthritis. Curr. Pain. Headache Rep. 18:456, 2014.CrossRefGoogle Scholar
  5. 5.
    Jacobs, B. Y., E. H. Lakes, A. J. Reiter, S. P. Lake, T. R. Ham, N. D. Leipzig, S. L. Porvasnik, C. E. Schmidt, R. A. Wachs, and K. D. Allen. The open source gaitor suite for rodent gait analysis. Sci. Rep. 8:9797, 2018.CrossRefGoogle Scholar
  6. 6.
    Kloefkorn, H. E., B. Y. Jacobs, A. M. Loye, and K. D. Allen. Spatiotemporal gait compensations following medial collateral ligament and medial meniscus injury in the rat: correlating gait patterns to joint damage. Arthritis Res. Ther. 17:287, 2015.CrossRefGoogle Scholar
  7. 7.
    Kloefkorn, H. E., T. R. Pettengill, S. M. Turner, K. A. Streeter, E. J. Gonzalez-Rothi, D. D. Fuller, and K. D. Allen. Automated gait analysis through hues and areas (agatha): a method to characterize the spatiotemporal pattern of rat gait. Ann. Biomed. Eng. 45:711–25, 2016.CrossRefGoogle Scholar
  8. 8.
    Kloos, A. D., L. C. Fisher, M. R. Detloff, D. L. Hassenzahl, and D. M. Basso. Stepwise motor and all-or-none sensory recovery is associated with nonlinear sparing after incremental spinal cord injury in rats. Exp. Neurol. 191:251–65, 2005.CrossRefGoogle Scholar
  9. 9.
    Lang, B. T., J. M. Cregg, M. A. DePaul, A. P. Tran, K. Xu, S. M. Dyck, K. M. Madalena, B. P. Brown, Y.-L. Weng, S. Li, S. Karimi-Abdolrezaee, S. A. Busch, Y. Shen, and J. Silver. Modulation of the proteoglycan receptor ptpsigma promotes recovery after spinal cord injury. Nature 518:404, 2014.CrossRefGoogle Scholar
  10. 10.
    Li, H., T. R. Ham, N. Neill, M. Farrag, A. E. Mohrman, A. M. Koenig, and N. D. Leipzig. A hydrogel bridge incorporating immobilized growth factors and neural stem/progenitor cells to treat spinal cord injury. Adv. Healthc. Mater. 5:802–812, 2016.CrossRefGoogle Scholar
  11. 11.
    Mohan, R., A. P. Tosolini, and R. Morris. Segmental distribution of the motor neuron columns that supply the rat hindlimb: a muscle/motor neuron tract-tracing analysis targeting the motor end plates. Neuroscience 307:98–108, 2015.CrossRefGoogle Scholar
  12. 12.
    Okada, S., M. Hara, K. Kobayakawa, Y. Matsumoto, and Y. Nakashima. Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci. Res. 126:39–43, 2018.CrossRefGoogle Scholar
  13. 13.
    Redondo-Castro, E., A. Torres-Espin, G. Garcia-Alias, and X. Navarro. Quantitative assessment of locomotion and interlimb coordination in rats after different spinal cord injuries. J. Neurosci. Methods 213:165–78, 2013.CrossRefGoogle Scholar
  14. 14.
    Sabelstrom, H., M. Stenudd, and J. Frisen. Neural stem cells in the adult spinal cord. Exp. Neurol. 260:44–9, 2014.CrossRefGoogle Scholar
  15. 15.
    Tsai, E. C., R. L. van Bendegem, S. W. Hwang, and C. H. Tator. A novel method for simultaneous anterograde and retrograde labeling of spinal cord motor tracts in the same animal. J. Histochem. Cytochem. 49:1111–22, 2001.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of AkronAkronUSA
  2. 2.Department of BiologyUniversity of AkronAkronUSA
  3. 3.J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleUSA
  4. 4.Department of Chemical and Biomolecular EngineeringUniversity of AkronAkronUSA

Personalised recommendations