Advertisement

Design, Modelling and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform

Abstract

This work explores the feasibility of creating and accurately controlling an instrument for robotic surgery with a 2 mm diameter and a three degree-of-freedom (DoF) wrist which is compatible with the da Vinci platform. The instrument’s wrist is composed of a two DoF bending notched-nitinol tube pattern, for which a kinematic model has been developed. A base mechanism for controlling the wrist is designed for integration with the da Vinci Research Kit. A basic teleoperation task is successfully performed using two of the miniature instruments. The performance and accuracy of the instrument suggest that creating and accurately controlling a 2 mm diameter instrument is feasible and the design and modelling proposed in this work provide a basis for future miniature instrument development.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

References

  1. 1.

    Bekeny, J. R., P. J. Swaney, R. J. Webster, III, P. T. Russell, and K. D. Weaver. Forces applied at the skull base during transnasal endoscopic transsphenoidal pituitary tumor excision. J. Neurol. Surg. B 74:337–341, 2013.

  2. 2.

    Fichera, L., N. P. Dillon, D. Zhang, I. S. Godage, M. A. Siebold, B. I. Hartley, J. H. Noble, P. T. Russell, R. F. Labadie, and R. J. Webster. Through the eustachian tube and beyond: a new miniature robotic endoscope to see into the middle ear. IEEE Robot. Autom. Lett. 2(3):1488–1494, 2017.

  3. 3.

    Francis, P., K. W. Eastwood, V. Bodani, K. Price, K. Upadhyaya, D. Podolsky, H. Azimian, T. Looi, and J. Drake. Miniaturized instruments for the da Vinci Research Kit: design and implementation of custom continuum tools. IEEE Robot. Autom. Mag. 24(2):24–33, 2017.

  4. 4.

    Francis, P., K. W. Eastwood, V. Bodani, T. Looi, and J. M. Drake. Design and kinematic modelling of a miniature compliant wrist for the da Vinci Research Kit. In: The Hamlyn Symposium on Medical Robotics, 2017, pp. 41–42.

  5. 5.

    Haga, Y., Y. Muyari, S. Goto, T. Matsunaga, and M. Esashi. Development of minimally invasive medical tools using laser processing on cylindrical substrates. Electr. Eng. Jpn 176(1):65–74, 2011.

  6. 6.

    Harada, K., Z. Bo, S. Enosawa, T. Chiba, and M. G. Fujie. Bending laser manipulator for intrauterine surgery and viscoelastic model of fetal rat tissue. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, 2007, pp. 611–616.

  7. 7.

    Intuitive Surgical Annual Report 2017, 2017.

  8. 8.

    Kazanzides, P., Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P. DiMaio. An open-source research kit for the da Vinci® Surgical System. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 6434–6439.

  9. 9.

    Marcus, H. J., A. Hughes-Hallett, T. P. Cundy, G.-Z. Yang, A. Darzi, and D. Nandi. Da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg. Rev. 38(2):367–371, 2015.

  10. 10.

    Marcus, H. J., K. Zareinia, L. S. Gan, F. W. Yang, S. Lama, G.-Z. Yang, and G. R. Sutherland. Forces exerted during microneurosurgery: a cadaver study. Int. J. Med. Robot. Comput. Assist. Surg. 10(2):251–256, 2014.

  11. 11.

    McLeod, I. K., E. A. Mair, and P. C. Melder. Potential applications of the da Vinci minimally invasive surgical robotic system in otolaryngology. Ear Nose Throat J. 84(8):483–487, 2005.

  12. 12.

    Meehan, J. J., and A. Sandler. Robotic repair of a Bochdalek congenital diaphragmatic hernia in a small neonate: robotic advantages and limitations. J. Pediatr. Surg. 2007. https://doi.org/10.1016/j.jpedsurg.2007.06.013.

  13. 13.

    Moorthy, K., Y. Munz, A. Dosis, J. Hernandez, S. Martin, F. Bello, T. Rockall, and A. Darzi. Dexterity enhancement with robotic surgery. Surg. Endosc. 18(5):790–795, 2004.

  14. 14.

    Peirs, J., H. Van Brussel, D. Reynaerts, and G. De Gersem. A flexible distal tip with two degrees of freedom for enhanced dexterity in endoscopic robot surgery. In: The 13th Micromechanics Europe Workshop, 2002, pp. 271–274.

  15. 15.

    Ryu, S. C., P. Renaud, R. J. Black, B. L. Daniel, and M. R. Cutkosky. Feasibility study of an optically actuated MR-compatible active needle. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011, pp. 2564–2569.

  16. 16.

    Song, J., B. Gonenc, J. Guo, and I. Iordachita. Intraocular snake integrated with the steady-hand eye robot for assisted retinal microsurgery. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), 2017, pp. 6724–6729.

  17. 17.

    Swaney, P. J., P. A. York, H. B. Gilbert, J. Burgner-Kahrs, and R. J. Webster, III. Design, fabrication, and testing of a needle-sized wrist for surgical instruments. J. Med. Device 2017. https://doi.org/10.1115/1.403457.

  18. 18.

    York, P. A., P. J. Swaney, H. B. Gilbert, and R. J. Webster. A wrist for needle-sized surgical robots. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 1776–1781.

Download references

Author information

Correspondence to P. Francis.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 192417 kb)

Supplementary material 1 (MP4 192417 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Francis, P., Eastwood, K.W., Bodani, V. et al. Design, Modelling and Teleoperation of a 2 mm Diameter Compliant Instrument for the da Vinci Platform. Ann Biomed Eng 46, 1437–1449 (2018) doi:10.1007/s10439-018-2036-4

Download citation

Keywords

  • Surgical robotics
  • Dexterous manipulators
  • Compliant joints
  • Miniature instruments