Annals of Biomedical Engineering

, Volume 46, Issue 5, pp 772–787 | Cite as

Spheroid Culture System Confers Differentiated Transcriptome Profile and Functional Advantage to 3T3-L1 Adipocytes

  • Paul A. Turner
  • Michael R. Garrett
  • Sean P. Didion
  • Amol V. Janorkar
Article

Abstract

This study highlights functional differences between 2-D monolayer and 3-D spheroid 3T3-L1 adipocyte culture models and explores the underlying genomic mechanisms responsible for the different phenotypes present. The spheroids showed higher triglyceride accumulation than the monolayer culture and further increase with larger spheroid size. Whole transcriptome analysis indicated significant differential expression of genes related to adipogenesis, including adipocytokine signaling, fatty acid metabolism, and PPAR-γ signaling. Spheroids also showed downregulation of matrix metalloproteinases (MMPs), integrin, actin-cytoskeleton associated genes, and Rho/GTPase3 expression relative to 2-D monolayer, indicating suppression of the Rho-ROCK pathway and thereby promoting adipogenic differentiation. When exposed to linoleic acid (500 μM) and TNF-α (125 ng/mL) to promote chronic adiposity, linoleic acid treatment resulted in increased intracellular triglycerides and subsequent TNF-α treatment resulted in significantly altered adipocytokine signaling, fatty acid metabolism, and PPAR signaling, in addition to upregulation of multiple MMPs in spheroids vs. monolayer. Overall, 3-D spheroids showed enhanced adipogenic phenotype as indicated by triglyceride synthesis and transcriptome changes while retaining sensitivity to a pro-inflammatory stimulus. The 3-D spheroid culture thus may provide a simple, convenient, and sensitive in vitro model to study adipocyte response to metabolic stresses relevant to clinical pathologies.

Keywords

Gene expression Cell culture Matrix metalloproteinase (MMP) Triglyceride Adipocytes 

Notes

Acknowledgments

This work was funded by the School of Dentistry and the University of Mississippi Medical Center intramural research support programs, National Science Foundation (NSF; CBET-1033525), and National Institutes of Health (NIH; R01EB020006). The work performed through the UMMC Molecular and Genomics Facility is supported, in part, by funds from NIH, including Mississippi INBRE (P20GM103476), Center for Psychiatric Neuroscience COBRE (P30GM103328) and Obesity, Cardiorenal and Metabolic Diseases COBRE (P20GM104357). Animal fat isolation work is funded by NIH (R01HL089884, R01HL107632 to SPD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NSF or NIH. This work made use of instruments in the Department of Biomedical Materials Science Shared Equipment Facility.

Conflict of interest

The authors have no conflict of interests to disclose.

References

  1. 1.
    Alwayn, I. P., K. Gura, V. Nosé, B. Zausche, P. Javid, J. Garza, J. Verbesey, S. Voss, M. Ollero, C. Andersson, B. Bistrian, J. Folkman, and M. Puder. Omega-3 fatty acid supplementation prevents hepatic steatosis in a murine model of nonalcoholic fatty liver disease. Pediatr. Res. 57:445–452, 2005.CrossRefPubMedGoogle Scholar
  2. 2.
    Bouloumie, A., C. Sengenès, G. Portolan, J. Galitzky, and M. Lafontan. Adipocyte produces matrix metalloproteinases 2 and 9: involvement in adipocyte differentiation. Diabetes. 50:2080–2086, 2001.CrossRefPubMedGoogle Scholar
  3. 3.
    Calder, P. C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83:S1505–S1519, 2006.CrossRefGoogle Scholar
  4. 4.
    Cawthorn, W. P., and J. K. Sethi. TNF-alpha and adipocyte biology. FEBS Lett. 582:117–131, 2008.CrossRefPubMedGoogle Scholar
  5. 5.
    Chavey, C., B. Mari, M. N. Monthouel, S. Bonnafous, P. Anglard, E. Van Obberghen, and S. Tartare-Deckert. Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J. Biol. Chem. 278:11888–11896, 2003.CrossRefPubMedGoogle Scholar
  6. 6.
    Chun, T., K. B. Hotary, F. Sabeh, A. R. Saltiel, E. D. Allen, and S. J. Weiss. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell. 125:577–591, 2006.CrossRefPubMedGoogle Scholar
  7. 7.
    Cristancho, A. G., and M. A. Lazar. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell. Biol. 12:722–734, 2011.CrossRefPubMedGoogle Scholar
  8. 8.
    Daya, S., A. J. Loughlin, and H. A. Macqueen. Culture and differentiation of preadipocytes in two-dimensional and three-dimensional in vitro systems. Differentiation. 75:360–370, 2007.CrossRefPubMedGoogle Scholar
  9. 9.
    Duranti, F., G. Salti, B. Bovani, M. Calandra, and M. L. Rosati. Injectable hyaluronic acid gel for soft tissue augmentation: a clinical and histological study. Dermatol. Surg. 24:1317–1325, 1998.PubMedGoogle Scholar
  10. 10.
    Evans, M., C. Geigerman, J. Cook, L. Curtis, B. Kuebler, and M. McIntosh. Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids. 35:899–910, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Garaulet, M., J. J. Hernandez-Morante, J. Lujan, F. J. Tebar, and S. Zamora. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int. J. Obes. (Lond) 30:899–905, 2006.CrossRefGoogle Scholar
  12. 12.
    Kokta, T. A., A. L. Strat, M. R. Papasani, J. I. Szasz, M. V. Dodson, and R. A. Hill. Regulation of lipid accumulation in 3T3-L1 cells: insulin-independent and combined effects of fatty acids and insulin. Animal. 2:92–99, 2008.CrossRefPubMedGoogle Scholar
  13. 13.
    Lopez, I. P., A. Marti, F. I. Milagro, M. D. L. Zulet, M. J. Moreno-Aliaga, J. A. Martinez, and C. De Miguel. DNA microarray analysis of genes differentially expressed in diet-induced (cafeteria) obese rats. Obes. Res. 11:188–194, 2003.CrossRefPubMedGoogle Scholar
  14. 14.
    Lynch, C. M., D. A. Kinzenbaw, X. Chen, S. Zhan, E. Mezzetti, J. Filosa, A. Ergul, J. L. Faulkner, F. M. Faraci, and S. P. Didion. Nox2-derived superoxide contributes to cerebral vascular dysfunction in diet-induced obesity. Stroke. 44:3195–3201, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Madsen, L., R. K. Petersen, and K. Kristiansen. Regulation of adipocyte differentiation and function by polyunsaturated fatty acids. Biochim. Biophys. Acta. 1740:266–286, 2005.CrossRefPubMedGoogle Scholar
  16. 16.
    Mammoto, A., and D. E. Ingber. Cytoskeletal control of growth and cell fate switching. Curr. Opin. Cell Biol. 21:864–870, 2009.CrossRefPubMedGoogle Scholar
  17. 17.
    Marler, J. J., A. Guha, J. Rowley, R. Koka, D. Mooney, J. Upton, and J. P. Vacanti. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast. Reconstr. Surg. 105:2049–2058, 2000.CrossRefPubMedGoogle Scholar
  18. 18.
    McBeath, R., D. M. Pirone, C. M. Nelson, K. Bhadjiraju, and C. S. Chen. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6:483–495, 2004.CrossRefPubMedGoogle Scholar
  19. 19.
    Patel, P. N., A. S. Gobin, J. L. West, and C. W. Patrick, Jr. Poly(ethylene glycol) hydrogel system supports preadipocyte viability, adhesion, and proliferation. Tissue Eng. 11:1498–1505, 2005.CrossRefPubMedGoogle Scholar
  20. 20.
    Patrick, Jr, C. W. Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin. Surg. Oncol. 19:302–311, 2000.CrossRefPubMedGoogle Scholar
  21. 21.
    Poulsen, L. I., M. Siersbæk, and S. Mandrup. PPARs: fatty acid sensors controlling metabolism. Semin. Cell. Dev. Biol. 23:631–639, 2012.CrossRefPubMedGoogle Scholar
  22. 22.
    Sauma, L., K. G. Stenkula, P. Kjølhede, P. Strålfors, M. Söderström, and F. H. Nystrom. PPAR-γ response element activity in intact primary human adipocytes: effects of fatty acids. Nutrition. 22:60–68, 2006.CrossRefPubMedGoogle Scholar
  23. 23.
    Shiomi, N., M. Maeda, and M. Mimura. Compounds that inhibit triglyceride accumulation and TNFα secretion in adipocytes. J. Biomed. Sci. Eng. 4:684–691, 2011.CrossRefGoogle Scholar
  24. 24.
    Spiegelman, B. M., and C. A. Ginty. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell. 35:657–666, 1983.CrossRefPubMedGoogle Scholar
  25. 25.
    Stein, C. J., and G. A. Colditz. The epidemic of obesity. J. Clin. Endocrinol. Metab. 89:2522–2525, 2004.CrossRefPubMedGoogle Scholar
  26. 26.
    Todoric, J., M. Löffler, J. Huber, M. Bilban, M. Reimers, A. Kadl, M. Zeyda, W. Waldhäusl, and T. M. Stulnig. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia. 49:2109–2119, 2006.CrossRefPubMedGoogle Scholar
  27. 27.
    Turner, P. A., B. Gurumurthy, J. L. Bailey, C. M. Elks, and A. V. Janorkar. Adipogenic differentiation of human adipose-derived stem cells grown as spheroids. Proc. Biochem. 59:312–320, 2017.CrossRefGoogle Scholar
  28. 28.
    Turner, P. A., L. M. Harris, C. A. Purser, R. C. Baker, and A. V. Janorkar. A surface-tethered spheroid model for functional evaluation of 3T3-L1 adipocytes. Biotechnol. Bioeng. 111:174–183, 2014.CrossRefPubMedGoogle Scholar
  29. 29.
    Turner, P. A., T. Yi, S. J. Weiss, and A. V. Janorkar. Three-dimensional spheroid cell model of in vitro adipocyte inflammation. Tissue Eng. Part A 21:1837–1847, 2015.CrossRefPubMedGoogle Scholar
  30. 30.
    Westbrook, L. J., A. C. Johnson, K. R. Regner, J. Lee, D. L. Mattson, P. B. Kyle, J. R. Henegar, and M. R. Garrett. Genetic susceptibility and loss of Nr4a1 enhances macrophage mediated renal injury in a rodent model of chronic kidney disease. J. Am. Soc. Nephr. 25:2499–2510, 2014.CrossRefGoogle Scholar
  31. 31.
    Xu, H. E., M. H. Lambert, V. G. Montana, D. J. Parks, S. G. Blanchard, P. J. Brown, D. D. Sternbach, J. M. Lehmann, G. B. Wisely, T. M. Willson, S. A. Kliewer, and M. V. Milburn. Molecular recognition of fatty acids by peroxisome proliferator–activated receptors. Mol. Cell. 3:397–403, 1999.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Department of Biomedical Materials Science, School of DentistryUniversity of Mississippi Medical CenterJacksonUSA
  2. 2.Department of Pharmacology and Toxicology, School of MedicineUniversity of Mississippi Medical CenterJacksonUSA

Personalised recommendations