Elucidation of Endothelial Cell Hemostatic Regulation with Integrin-Targeting Hydrogels

  • Allison Post
  • Sevinj Isgandarova
  • Margarita Martinez-Moczygemba
  • Mariah Hahn
  • Brooke Russell
  • Magnus Hook
  • Elizabeth Cosgriff-HernandezEmail author


Despite advances in the development of materials for cardiovascular devices, current strategies generally lack the thromboresistance of the native endothelium both in terms of efficacy and longevity. To harness this innate hemostatic regulation and improve long-term hemocompatibility, biohybrid devices are designed to promote endothelialization. Much of the research effort to date has focused on the use of extracellular matrix (ECM)-mimics and coatings to promote endothelial cell adhesion and migration with less attention given to the effect of the supported ECM binding events on hemostatic regulation. In this study, we developed integrin-targeted hydrogels to investigate the individual and combined effects of integrin binding events supported by many ECM-based coatings (α1β1, α2β1, α5β1, αvβ3). Targeted endothelial cell integrin interactions were first confirmed with antibody blocking studies and then correlated with gene expression of hemostatic regulators and a functional assay of platelet attachment and activation. Surfaces that targeted integrins α1β1 and α2β1 resulted in an endothelial cell layer that exhibited a thromboresistant phenotype with an associated reduction in platelet attachment and activation. It is anticipated that identification of specific integrins that promote endothelial cell adhesion as well as thromboresistance will enable the design of cardiovascular materials with improved long-term hemocompatibility.


Endothelial cells Integrins Hemostasis Thromboresistance Platelets 



This work was funded by the National Institutes of Health, Grant Numbers R21 EB020978 and R01 EB013297. The authors kindly thank the Grande-Allen lab for their help in platelet adhesion studies.

Conflict of interest

Dr. Cosgriff-Hernandez reports a stakeholder interest in ECM Technologies, outside the submitted work; In addition, Dr. Cosgriff-Hernandez, Dr. Magnus Hook, and Dr. Brooke Russell have a patent US20110288274A1 issued, and a patent US9725498B2 issued. Dr. Hook and Dr. Russell are also stakeholders in ECM Technologies (ECMT) that seeks to commercialize designer collagens such as those used in the studies presented.

Supplementary material

10439_2018_2194_MOESM1_ESM.tif (11.4 mb)
Supplementary Fig. 1 A) Cell population selected for analysis in the SSC vs. FSC plot. B) Representative PE signal from FACS analysis. The dotted line represents a blank sample and the grey peak is the signal from the stained HUVECs. Supplementary material 1 (TIFF 11648 kb)
10439_2018_2194_MOESM2_ESM.tif (22.1 mb)
Supplementary Fig. 2 Representative images of unblocked and most blocked (blocking with integrin antibody combinations) HUVEC adhesion. Nucleic stain: SYBR Green; actin stain: rhodamine phalloidin (red). Scale bar represents 200 µm. Supplementary material 2 (TIFF 22627 kb)
10439_2018_2194_MOESM3_ESM.tif (9.4 mb)
Supplementary Fig. 3 HUVEC gene expression of hemostatic regulators. All values have been normalized to TCPS GAPDH (value of 1, no fold change). Data shown is average ± standard deviation. * represents significance from all other groups. Significance was determined by ANOVA with a post hoc Tukey’s test with p < 0.05 for all comparisons. Supplementary material 3 (TIFF 9606 kb)
10439_2018_2194_MOESM4_ESM.docx (13 kb)
Supplementary material 4 (DOCX 13 kb)


  1. 1.
    Balaoing, L. R., A. D. Post, A. Y. Lin, H. Tseng, J. L. Moake, and K. J. Grande-Allen. Laminin peptide-immobilized hydrogels modulate valve endothelial cell hemostatic regulation. PLoS ONE 10:e0130749, 2015.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Balcells, M., and E. R. Edelman. Effect of pre-adsorbed proteins on attachment, proliferation, and function of endothelial cells. J. Cell. Physiol. 191:155–161, 2002.CrossRefGoogle Scholar
  3. 3.
    Browning, M., D. Dempsey, V. Guiza, S. Becerra, J. Rivera, B. Russell, M. Höök, F. Clubb, M. Miller, and T. Fossum. Multilayer vascular grafts based on collagen-mimetic proteins. Acta Biomater. 8:1010–1021, 2012.CrossRefGoogle Scholar
  4. 4.
    Bunch, T. J., H. T. May, T. L. Bair, B. G. Crandall, M. J. Cutler, J. D. Day, V. Jacobs, C. Mallender, J. S. Osborn, and S. M. Stevens. Atrial fibrillation patients treated with long-term warfarin anticoagulation have higher rates of all dementia types compared with patients receiving long-term warfarin for other indications. J. Am. Heart Assoc. 5:e003932, 2016.CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Davis, G. E. Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem. Biophys. Res. Commun. 182:1025–1031, 1992.CrossRefGoogle Scholar
  6. 6.
    Egbe, A. C., S. V. Pislaru, P. A. Pellikka, J. T. Poterucha, H. V. Schaff, J. J. Maleszewski, and H. M. Connolly. Bioprosthetic valve thrombosis versus structural failure: clinical and echocardiographic predictors. J. Am. Coll. Cardiol. 66:2285–2294, 2015.CrossRefGoogle Scholar
  7. 7.
    Félétou, M. The endothelium, Part I: Multiple functions of the endothelial cells-focus on endothelium-derived vasoactive mediators. In: Colloquium Series on Integrated Systems Physiology: From Molecule to FunctionMorgan & Claypool Life Sciences, pp. 1–306, 2011.Google Scholar
  8. 8.
    Fihn, S. D., M. McDonell, D. Martin, et al. Risk factors for complications of chronic anticoagulation: a multicenter study. Ann. Intern. Med. 118:511–520, 1993.CrossRefGoogle Scholar
  9. 9.
    Genové, E., C. Shen, S. Zhang, and C. E. Semino. The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials 26:3341–3351, 2005.CrossRefGoogle Scholar
  10. 10.
    Gillis-Haegerstrand, C., S. Frebelius, A. Haegerstrand, and J. Swedenborg. Cultured human endothelial cells seeded on expanded polytetrafluoroethylene support thrombin-mediated activation of protein C. J. Vasc. Surg. 24:226–234, 1996.Google Scholar
  11. 11.
    Hahn, M. S., L. J. Taite, J. J. Moon, M. C. Rowland, K. A. Ruffino, and J. L. West. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27:2519–2524, 2006.CrossRefGoogle Scholar
  12. 12.
    Hanson, S. R., H. F. Kotze, B. Savage, and L. A. Harker. Platelet interactions with Dacron vascular grafts. A model of acute thrombosis in baboons. Arterioscler. Thromb. Vasc. Biol. 5:595–603, 1985.Google Scholar
  13. 13.
    Heino, J. The collagen receptor integrins have distinct ligand recognition and signaling functions. Matrix Biol. 19:319–323, 2000.CrossRefGoogle Scholar
  14. 14.
    Lu, A., and R. Sipehia. Antithrombotic and fibrinolytic system of human endothelial cells seeded on PTFE: the effects of surface modification of PTFE by ammonia plasma treatment and ECM protein coatings. Biomaterials 22:1439–1446, 2001.CrossRefGoogle Scholar
  15. 15.
    Lu, S., P. Zhang, X. Sun, F. Gong, S. Yang, L. Shen, Z. Huang, and C. Wang. Synthetic ePTFE grafts coated with an anti-CD133 antibody-functionalized heparin/collagen multilayer with rapid in vivo endothelialization properties. ACS Appl. Mater. Interfaces 5:7360–7369, 2013.CrossRefGoogle Scholar
  16. 16.
    McGuigan, A. P., and M. V. Sefton. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials 28:2547–2571, 2007.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Medcalf, R. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J. Thromb. Haemost. 5:132–142, 2007.CrossRefGoogle Scholar
  18. 18.
    Morgan, M. R., M. J. Humphries, and M. D. Bass. Synergistic control of cell adhesion by integrins and syndecans. Nat. Rev. Mol. Cell Biol. 8:957, 2007.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Munoz-Pinto, D. J., V. R. Guiza-Arguello, S. M. Becerra-Bayona, J. Erndt-Marino, S. Samavedi, S. Malmut, B. Russell, M. Höök, and M. S. Hahn. Collagen-mimetic hydrogels promote human endothelial cell adhesion, migration and phenotypic maturation. J. Mater. Chem. B 3:7912–7919, 2015.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Osterud, B. Cellular interactions in tissue factor expression by blood monocytes. Blood Coagul. Fibrinolysis 6:S20–25, 1995.CrossRefGoogle Scholar
  21. 21.
    Pearson, J. D. Endothelial cell function and thrombosis. Best Pract. Res. Clin. Haematol. 12:329–341, 1999.CrossRefGoogle Scholar
  22. 22.
    Plant, A. L., K. Bhadriraju, T. A. Spurlin, and J. T. Elliott. Cell response to matrix mechanics: focus on collagen. Biochim Biophys Acta 1793:893–902, 2009.CrossRefGoogle Scholar
  23. 23.
    Post, A., E. Wang, and E. Cosgriff-Hernandez. A review of integrin-mediated endothelial cell phenotype in the design of cardiovascular devices. Ann. Biomed. Eng. 2018. Scholar
  24. 24.
    Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10:712, 2010.CrossRefGoogle Scholar
  25. 25.
    Turner, N. A., L. Nolasco, Z. M. Ruggeri, and J. L. Moake. Endothelial cell ADAMTS-13 and VWF: production, release, and VWF string cleavage. Blood 114:5102–5111, 2009.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    van Hinsbergh, V. W. Endothelium—role in regulation of coagulation and inflammation. In: Seminars in Immunopathology, pp. 93–106, 2012.Google Scholar
  27. 27.
    Von, Ruggeri Z. Willebrand factor, platelets and endothelial cell interactions. J. Thromb. Haemost. 1:1335–1342, 2003.CrossRefGoogle Scholar
  28. 28.
    Vuoriluoto, K., J. Jokinen, K. Kallio, M. Salmivirta, J. Heino, and J. Ivaska. Syndecan-1 supports integrin α2β1-mediated adhesion to collagen. Exp. Cell Res. 314:3369–3381, 2008.CrossRefGoogle Scholar
  29. 29.
    Wissink, M., R. Beernink, A. A. Poot, G. Engbers, T. Beugeling, W. Van Aken, and J. Feijen. Relation between cell density and the secretion of von Willebrand factor and prostacyclin by human umbilical vein endothelial cells. Biomaterials 22:2283–2290, 2001.CrossRefGoogle Scholar
  30. 30.
    Woods, A., and J. R. Couchman. Syndecans: synergistic activators of cell adhesion. Trends Cell Biol. 8:189–192, 1998.CrossRefGoogle Scholar
  31. 31.
    Xu, Y., D. R. Keene, J. M. Bujnicki, M. Höök, and S. Lukomski. Streptococcal Scl1 and Scl2 proteins form collagen-like triple helices. J. Biol. Chem. 277:27312–27318, 2002.CrossRefGoogle Scholar
  32. 32.
    Zhang, K., J.-A. Li, K. Deng, T. Liu, J.-Y. Chen, and N. Huang. The endothelialization and hemocompatibility of the functional multilayer on titanium surface constructed with type IV collagen and heparin. Colloids Surf. B 108:295–304, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Center for Inflammatory and Infectious Diseases, Institute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonUSA
  3. 3.Department of Biomedical EngineeringRensselaer Polytechnic InstituteTroyUSA
  4. 4.Department of Biomedical EngineeringUniversity of TexasAustinUSA

Personalised recommendations